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Abstract

Schwarz alternating method (3M) is an old mathematical technique dating from

1869. It was commonly believed that $M was a useful tool for theoretical anal-
ysis but not a very practical approach for computations. The earlier experiences
showed that M converged slowly. In this thesis, SiM is reexamined and general-
ized. The governing factors of convergence of #M are explored through the analysis
for the model problem. Based on this knowledge, many acceleration schemes can
be combined with $M to yield a new type of iterative method for large sparse ma-
trix problems. In particular, when these techniques are applied to the solution of
the model problem, an optimal complexity can be achieved. Some generalizations
of -%M namely Schwarz splittings (&'), are presented here. For many important
applications, such as performing parallel computations in a non-shared memory
environment, using composite grids and also applymg fast solvers in an irregular
region, &’s are found to be useful techniques.

In order to identify the types of problems for which $'s are most suitable, a
new structure for the linear operators called template operators has been developed.
Some decay results for the elements of the inverses of sparse operators are given.

These results provide a theoretical basis for determining when these & techniques
can be used successfully.
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" Chapter 1
1%
rod
- Introduction
o~
(".
b This dissertation is a reexamination and generalization of a very old mathematical
2 technique ~Schwarz Alternating Method ($M). It was commonly believed that 3
A was a useful tool for theoretical analysis but not a very practical approach for com-
1
e putations. Some preliminary experiments had indicated that %M was not promising
2 because it converged too slowly. There was little knowledge of the factors governing
. the convergence of this method. In this study, an analysis of $M for the model
-': problem for elliptic partial differential equations is presented. The convergence fac-
-
f tor of #M is found to be a function of many components. Based on the analysis,
: many acceleration schemes can be combined with this idea to yield a competitive
> new type of iterative method for large sparse matrix problems. Generalizations of
& $M are als: introduced in this thesis. We show that $4M is not only suitable to
:: solve elliptic partial differential equations, it is also a good computational model
_ for many other important applications. Particularly, a new structural view of linear
k2 operators is presented which provides a useful tool for analyzing the behavior of
?‘
R sparse operators.
i‘ Here the original version of $#M is first introduced. Following this description the
motivations of this study are discussed. Then a brief historical survey is presented.
b At the end of this introduction, the organization of the rest of this dissertation is
", .
) outlined.
3‘ In the last century, Schwarz [Sch69] found that, for a region consisting of the
v N union of two rectangular regions or disks, he could construct a sequence of solutions |
s of the Laplace equation on subregions which would converge to the solution of the
's Laplace equation on the union. His method is now called $M. The description of |
» a simple version of #M is as follows: ‘
Vi |
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.'f Figure 1.1: Two overlapping subregions
o Consider the Dirichlet problem for an elliptic operator L}
o L = f, x€N
; ; (u) f ' (1. 1)
h ulr, =9, x €lq
3 where § is a bounded region in k-dimensional space, I'q is the boundary of 2,
\)
f.:‘ x = {z1,z3,---,zx} is the independent variable.
)
;:" Schwarz split the solution domain 2 into two overlapping subdomains 2; and
A Q. Let Q12 = Q,NQ, #0, Tq,, Ta,, Ta,, denote the boundaries of 2;, Q; and 0,
» respectively (see fig.1.1). Let
. "
R r o, = Pl + F'la
' Pﬂ: = Fz + Flg.
K where
5 I' = I'gn Fn, , ‘

1 We assume that the solution of this problem exists and is unique.




3
F,l = rﬂl N rﬂuv
I'; = qaNnTlg,,
r; = Ig,NTCq,.
From this splitting we can formulate two coupled problems
J L(w) =f, x € Q,
u I - ¢, X € Flv (12)
1 Fn; Uz, X € I"l’
L(uz) =f, x € Qg,
S u | _} v, xely, (1.3)
| *? Ta, u, x €T,

It is clear that u, the solution of (1.1), is the solution of (1.2) and (1.3). We
may also easily show that:

U1 = ug, x € {3,
Uy =1u, X € Ql,
u =u, x € ;.

Thus, the problem (1.1) is equivalent to the pair of problems (1.2) and (1.3). Since
there are unknowns which are coupled in the boundary conditions, we cannot solve
the two problems independently. But giving an initial guess u |r;= tq, we will be

able to construct a sequence {ul , Ug )} as follows:

r L(ugo)) = f, x € 2y,
1 () v, x€Tly, (1.4)
: [ LYY =, x € Q;,
A < 0] I ‘l/), xEFg, (1 5)
u =
k 2 Ta, WY xery,
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O L(ug')) = f, x € y,

4 :’ ul | _J v, xely (1.6)
f;,: ' Ta, ug), x eIy,

Hl: i=1’2’-..

) . .

o It can now be shown that the sequence {u{", u!"} will converge to the solutions
> '\'2: {u1,uz} of (1.2) and (1.3) under certain conditions (see section 2.3). Then, from
¢ ,';

the solution of (1.2) and (1.3), the solution of (1.1) can be constructed.
Here we have just described the simplest version of M. Unlike some other
techniques which usually are precise procedures for solving problems, #M basically

;‘.:?‘ gives us only a philosophy for solving a problem. The freedom inherent in $M
:‘::ig,‘ provides great opportunity to incorporate many other techniques in order to obtain
® good performance.

A

ii‘ o Freedom in the geometrical shapes of the subproblems. This freedom makes
! &_ it possible to tailor the subregions to meet the requirements imposed by fast

solvers or by grids.

:‘ Y o Freedom in the solution techniques for subproblems. We are able to choose
s 3 different solution techniques for different subproblems. It is also possible to use
"')‘ : different ways to obtain the solution of the same subproblem in the different
;n"' stages of the computation, allowing us to use an optimal approach at any
W

particular moment and in any particular location. This is a unique feature of

o
Lot M.

;,,‘.. e Freedom in the numerical model for each subproblem. Special boundary
"ﬁ.ﬁ shapes or local behavior of the solution need a special treatment in the mod-
'," ! : eling. The decoupled subproblems allow us to localize the special treatment
K ‘ to the place where it is needed. Composite grids are a good example of this
e, case.
ey
(v
EE‘ :j ¢ Freedom in the number of subproblems. This freedom will permit us to adapt
s this algorithm to different degrees of parallelism.
vy

o

v
o
o4
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o Freedom in the coupling pattern.
— The type of boundary value for these artificial boundaries in the decom-
position.
— Overlapping area.
— More than one partitioning.

Later we will show that proper use of these freedoms can yield an efficient
algorithm.

A particularly interesting application of 3 is for parallel computations. %M
not only provides parallelism in the algorithm. Another advantage for an efficient
implementation of #M is the local communication pattern and the hiding of global

information exchange. For any current state—of-the-art parallel computer the cost

‘;,! of the communication is always a killer of efficiency. The relatively cheap cost
§~: of the hardware provides a possibility of using a large number of processors to
" solve a big problem. Unfortunately, in the near future the communication cost will
A prevent us from fully taking advantage of fine grain parallelism in a general purpose
: computer architecture. The low ratio of communication verse computation, the
,'E coarser granularity and the flexibilities we mentioned above make %M an attractive
"' candidate as a paralle] algorithm. This is one of the major motivations for our
il. study.

: Since this alternating method appeared, many application areas have been found.
:,' Here we present a brief historical survey of the literature:

f:: In 1869 Schwarz [Sch69] first developed a method he called an alternating
’ method to prove the existence of the solution of the Dirichlet problem for the Laplace
i i equation on a union of two overlapping areas. Soon Neumann [Neu70] observed that
:_:-. a similar idea could be applied to the solution of the Dirichlet problem in a region
; that is the intersection of two other regions overlapping one another. Later Poincaré
_' [Poi90] developed his methode de balayage, which is similar to Schwarz’s method,
::‘i Poincaré was also concerned with existence proofs rather than computation.

.EE; During the 30’s many Russian mathematicians applied Schwarz’s method to
'." problems in elastostatics. They treated the solution process of %M as a search
"

s
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0 6 CHAPTER 1. INTRODUCTION

for the minimum of a variational problem. This new way of thinking provided

o possibilities for enlarging the applicable areas. Gorgidze [Gor34a], [Gor34b] applied
) $M to a plane problem in the theory of elasticity. Almost at the same time, Mikhlin
W [Mik34] generalized this idea to a biharmonic problem. He proved the convergence
:";“ of UM to the solution of the second elastostatic boundary value problem. A more
;:;' general proof of this method for the second boundary value problems of elasticity in
:::' three dimensions was sketched out by Sobolev[Sob36)]. He reduced the consideration

of convergence of the sequence of approximations to a study of convergence to the

o5 minimum of the integral of strain energy.

: In the early 50’s, Kantorovich and Krylov [KK58] gave a set of sufficient conditions?

; . which guarantee the convergence of #M. These conditions encompass most of the

0 areas to which #M can be applied.

e After the 60’s people started to apply #M to numerical computations rather

:.. than to existence proofs or theoretical analysis. Some new algorithms such as ADI

j methods or Fourier series methods were the state of the art at that time, but they

) could only be applied to rectangular regions. M was a very natural way of applying

A 1 these methods to a union of rectangular regions.

5} D’Jakonov [DJa62] derived some work estimates for solving Poisson’s equation

to a given precision on overlapping rectangular regions by %M. The rectangular

J solutions are by the alternating-direction implicit method, or a similar method of

| D’Jakonov’s, applied to the 5—-point difference approximation.

A Werner [Wer60], [Wer63] considered application of 4M to any linear second-

‘.':, order elliptic P.D.E. with boundary conditions of the third type. He proved the

. existence of a continuous solution and gave error bounds for a solution which satisfies

%. the differential equation, but only approximates the boundary data. He presented

": some numerical results for the Laplace equation on an L-shaped region with mixed

DX boundary conditions. The rectangular solutions are expressed as a double finite

>- .' Fourier series.

": We have mentioned the result by Miller[Mil65]. In the same paper he also gives
E: work estimates for several cases. Fairweather and Mitchell [FM66] applied M o

"‘n" 3We will present them in section 2.3 of the next chapter.
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A
d ' a 9-point difference approximation on an L-shaped region. They used a modified
; ADI method to solve the subdomain problems.
% ::3 Dupont[Dup67) generalized their idea to the equation V(aVu) = p, and derived
oo work estimates on overlapping rectangular regions.
* ) Stoutemyer|[Sto72) applied #M and Neumann'’s variant to the Laplace equation
“"‘\: on the union and intersection of two disks.
: , As we mentioned earlier, applications of %M to the composite mesh method have
"n.':'! attracted people’s attention for some time. Volkov [Vol68] first presented a second
- order composite mesh method for the Dirichlet problem for the Laplace equation;
*\j he also used %M to solve the system of linear equations.
%: Later, Starius [Sta77] generalized this idea to linear second order elliptic equa-
& tions.
T When computer technology advanced to parallel processing, the inherent paral-
‘:{‘ | lelism in this algorithm obtained new appeal. Kang[KCSQ85] extended the varia-
At::% tional form of #M to general second order elliptic P.D.E.s, and tried to apply it to
A parallel computations.
f Glowinski, Dinh and Periaux [DGP80] [GDP80] formulated a conjugate gradient
o variant of M. Essentially, they reduced the problem to a minimization problem
“':):E on the intersection of two overlapping regions.
B) Rodrigue[RS84a], [RS84b] [Rod86], and [RS85] recast 34 in terms of numerical
. linear algebra so that classical techniques of acceleration could be applied. A Jacobi
f.E splitting of the modified matrix problem was studied in these papers.
E: Analyses and experiments have shown that the convergence rate of the plain
. $M can be further improved. Many authors have independently found that SOR
:’_:EZ acceleration of HM works very efficiently. Oliger, Skamarock, Tang [OST86| also
E..‘: noticed that the sensitivity of the relaxation parameter is related to the overlap.
{4 Theoretical estimates of the convergence rate and choice of the best relaxation
1 parameter for the model problem are given. In the same paper we mentioned
) above, Kang also proved the convergence of the SOR acceleration for the finite
" :j element method[KCSQ85]. Meier [Mei86] had also proposed a parallel SOR variant
i o of IM.
T:‘
o
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CHAPTER 1. INTRODUCTION

In the next chapter, an analysis of %M for the continuous model problem in the
k-dimensional case is presented, a few of the important factors which govern the
convergence of HM are explored and then a generalization — multi-color %M — and
its convergence proof are shown. This generalization is mainly motivated by parallel
computation. Because as we mentioned before, M can be viewed as a general
methodology for solving a problem, sets of sufficient conditions for convergence of

M when applied to functional equations are then presented.

Following Rodrigue and Simon’s idea, we propose a linear algebra analog of
this model in Chapter 3. The original matrix is modified into an equivalent, loosely
coupled matrix which is called the Schwarz Enhanced Matrix (or S8M). Some equiv-
alence theorems and the applicable matrices of the S5 are discussed. A Schwarz
splitting (&) of the J9M is then defined. If the original matrix is an M-matrix, then
& is a convergent splitting.

In Chapters 2 and 3, the analysis concentrates mainly on convergence and gen-
eralizations. Another important issue is the characterization of problems for which
SAM is most suitable. One particular phenomenon, exponential decay of the in-
verse of a sparse operator, which contributes to the success of %M, is investigated
in Chapter 4. We found that matrices were not good structures for the study of
this problem. New data structures, template vector and template operator, for a
linear operator in a finite dimensional space are introduced. Some bounds for the
norm of the wavefronts are shown. Particularly, a sufficient condition which yields
exponential decay of the inverse is given. These results provide some guidance for
a successful application of M.

Detailed analyses of the application of & to the model problem in one and
higher dimensional cases are presented in Chapter 5. The spectral radii of the
Jacobi iterative matrices of & for these cases are derived. Similar results can also

be derived for higher order difference schemes or finite element methods. We show

that if the overlapping area is a constant fraction of the subproblems, this algorithm
has an optimal order of complexity. This means that the work needed to obtain an
approximate solution which is accurate to truncation error is proportional to the

number of unknowns.
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. In Chapter 6, based on the analysis in Chapter 5, we apply several acceleration
" schemes to the different hierarchical levels of this algorithm. One consequence of the
! i analysis of & in the last chapter is that many classical techniques of acceleration.

v

‘o especially SOR (Successive Over Relaxation) acceleration, can be applied to this
' model. For the model problem, the classical analysis of SOR and many other accel-
v erations, for instance Chebychev acceleration, can be applied to this case without
- any difficulty. Theoretical analyses and experiments show that the improvement
:_ in the performance is significant. The choice of the relaxation parameter in SOR

acceleration is the only global information exchange in the algorithm. But if a lo-
f' cal relaxation method is used, this global communication can be eliminated. As

»

'f.: we show in Chapter 4, the mesh size is only involved in a higher order term of
o,
- the convergence rate. Also, the low frequency errors dominate the convergence. A

T multi-level grid strategy is appropriate here. In the last section we present some

. other parallel implementation strategies to make this algorithm a powerful parallel
‘ algorithm.
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g Chapter 2

0 Convergence Analyses and Multi-Color SAM

A

b

* In this chapter an application of #M to the continuous model problem for elliptic
; partial differential equations in the k-dimensional case is given in detail. Through
:’ the analysis of this example many important factors which affect the convergence
o rate of MM are disclosed. This analysis provides useful guidance for an efficient

implementation of H4M. Motivated by the parallel computations, a new parallel im-
plementation of multi—olor M and its convergence proof are presented in Section

2.2. Finally, two sets of very general sufficient conditions for the convergence of 4M
h in the literature are listed.

o

2.1 An Analysis of SAM
' In this section we will apply %M to the model problem on a uniform cube in k-
D PP
hY dimensional space. Through the analysis of the solution process in this problem
- we can demonstrate many important characteristics of this method . In later chap-
2 ters we will take advantage of these features to make M a competitive iterative
-
! algorithm.
¥ Consider the Dirichlet problem:
j Au(zlv""zb) =f(zlv"'»zk)v
)
pj “'Fo = g(z1,- -+, Zx).
4 . . . . .
0 where (? is a k-dimensional uniform cube for which the lengths of the edges are all
W equal to a. The restriction to uniform length is only for convenience of discussion;
. generalization to different lengths in different coordinates is straightforward.
' Let us decompose this cube into two! overlapping subregions. Suppose the
Y.
’ 1We can generalize this analysis to the case which has any finite number of subregions.
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N 0 Q

Figure 2.1: Two overlapping rectangular grids

overlapping direction is z;. Figure 2.1 shows a two dimensional case?. Denote ¢

" " as the width of the overlap, and b as the length of the subcube in the overlapping
.::'_ direction r;. Here I'} is CD and I'} is EF. Apply the algorithm 1.4-1.6 to these
y
K two overlapping regions; the sequence will eventually converge to the solution on
() . .
,:gf: the uniform cube. Denote ug'), ug') as the :-th approximate solutions in 2; and Q,,
J u; and u; the true solutions in the two subregions. Let
[N g
%
Y
o o
.'f:'.’ el =ul) -y,
S . egi) = u'(li) = U,
I8
‘_‘-_. ego) = €g ) IFI = 1[}0 - U3 'rl ,
g
[y . .,
;- & =iy,
9 ef) =¢l Ipe
o
o)
3
:, A 2If we may imagine the lines AB, CD, EF and HG are k — 1-dimensional uniform cubes. Then
ut it can also represent k-dimensional case.
W
o
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will satisfy the following relations:

[ A = x €N,
0 X

<‘ el IPe, = { 0 x : ?,:

[ A =0 x €
Jfg)lr ={0. xel;

{ 0 e(l"l) xel”

( Aegi) =0 x €
d e | _ { 0 xeI}
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2 CHAPTER 2. CONVERGENCE ANALYSES AND MUuLTI-COLOR SAM

(2.1)

(2.2)

(2.3)

Now we are able to analyze the convergence process by Fourier analysis. Since
the error functions of the approximation satisfy the Laplace equation and have
boundary values 0 except at one face of the subcube, by expanding the boundary
value efj ) at I} in Fourier series, we may express the error function in the whole
subcube in terms of the coefficients of the boundary values. Let

=3 ©  gn 12237 . LI
a;,.., 8 -+ -sin .
Let
) . I ™ . IRITET
8(ig, k) = af,)“ sip =2~ ... k;
i?v"',ik= 1927"'
and
(i, - ik) = i3+ - + 4.
Then we have inh r(i )2
(0) 81 T 12y " lk .
€ = ——8_g(4g,++,tk).
! Z sinh 7(3,, - ,1;.)" (12, 14)
The boundary value at I'; will be
e’ = ZSi“T(i”""i*)@s(iz i)
! sinh 7(ig, -+, k)2 T
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2.1. AN ANALYSIS OF SAM 13

By using the same reasoning, we have:

c(l)-_-Z(Sinhr(iz’“"ik)ﬁ-:_cl)23(i e )
: sinh 7(ig, - -, k) BT
Thus the amplification factors are:
sinh 7(ig, -+, 1) 52 (2.4)
sinhr(ig,---,i,,)g -
fg, oo ik =1,2,-

It is obvious that the amplification factor of the lowest frequency component
will dominate the convergence. If we define the convergence factor as the ratio of

the two norms of consecutive error functions, the convergence factor of this method

for the model problem is:

= )Eozb . (2.5)
From 2.4 and 2.5 we can observe a few important facts of %M. First the over-
lap ratio ¢/b has a strong influence on the convergence rate. That is: when the
overlap increases the convergence factor will improve exponentially. Also, the ratio
b/a will affect the convergence. It is clear that we should avoid overlapping in a
direction for which the width of the subregion is too short in comparison with the
other directions. Another important observation is that the amplification factors
exponentially decay when the frequencies increase. This is a favorable feature for
multilevel grid strategies. We can start the computations with a very coarse grid to
obtain coarse frequency information, then reduce the grid size to obtain the higher
frequency information. Moreover, 2.4 tells us that the high frequency errors do
not make a significant contribution to the error inside of the region. So we might
carry on the communication at some coarser grid level in order to reduce the com-
munication cost. Another important feature of $4M, especially propitious for large
scale computations, is that the higher the dimension the faster the convergence. In
later chapters we will elaborate these characteristics of $M in depth and apply sev-

eral acceleration schemes simultaneously to this model to construct a very efficient

algorithm.
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A
. Using the same idea and notation we can easily analyze the case of applying
. L]
B>, Neumann boundary condition on CD and EF. Now equations 1.2 and 1.3 become :
7
:“:_ Aul = fy z € le
. Uy |Fl =, (26)
";'
Ol 3_ux| , = 9w
;" 3n Fl n?
c..?: Au? = f’ zTE Q2’
Py
AN Uj Irz =, (27)
o 8% | =2
_-J' n 13 an
s
'24 The corresponding equations for the error functions are:
;.
N [ A? =, z € 1,
~ 0
2 $ e, =0, (2.8)
o PO
: L Iy =
" AC(;) = 0, T € Q?y
. )
2 < 63')’ Ir, =0, (2.9)
y 9el* 8eli=1)
ﬁ: | =+ Iry =%
Ly .
" AEg.) = 0, T E Ql,
I E(;) ‘rl =0, (2.10)
e ael" 3¢l
' |
0 Similarly, we may expand the error in the Neumann boundary condition problem
- in a Fourier series: |
fl
o . .
R PY 7Y 4 . RIET
o e =Za§f.’._,-. sin 7; o osin 222
g , . :
e The solution of the error in 2, is as follows:
'-':
";' (0) SiDhT'(ig," . ,ik)% .
"2 € = - N 3(12, y Uk
. ! ZCOShT(lg,"',lk% (12 )
[} »
o
&8
b
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SO

By the same reasoning, we know that the convergence factor of the error on the

R e e

artificial boundaries is:

s
(2]
o]
2]
fon

gﬁ

—
—_
o
|
o
~—

(S
—
(]

It is not difficult to see that the Dirichlet boundary condition on these artificial
boundaries works better than the Neumann boundary condition. Iu Chapter 6
we will show that this conclusion is also true for discrete cases. There are also
other kinds of combination of different boundary conditions can be imposed on
these artificial boundaries. For the Laplace operator, we have shown that Dirichlet
boundary conditions are better. This conclusion can also be derived from the decay
rate of the Green’s function. We will not present the details here. We could not
extend this analysis to obtain a general conclusion. I conjecture that for different
problems the best choice of the type of boundary conditions may vary. It is a very

interesting open problem for future research.

2.2 Multi-Color SAM and Its Convergence

The %M was originally constructed as a sequential process by Schwarz in 1869.
But the inherent parallelism in this idea provides many possibilities of constructing
some highly parallelized implementations. In this section a multi-color M for the

solution of a second order linear elliptic PDE is presented. The convergence proof
of this method is also given.

A simplest parallel implementation of %M is two color or red-black HM. It is a
natural extension of the red-black SOR algorithm. The basic idea of red-black 3M
is as follows: construct two sets of partitions of the solution region?, red and black.
given some initial guess on the artificial boundaries in the red set of subregions.
solve the red set of subproblems independently. Using the solution of the red set
for the value of the artificial boundaries in the black set, solve the subproblems in
the black set independently and repeat this process. If the partitioning provides a
balanced load for each processor, this implementation is a highly parallel algorithm.

But from the analysis in Section 2.1, we know that the error reduction varies from

3They have to cover the whole solution region.
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16 CHAPTER 2. CONVERGENCE ANALYSES AND MuLTI-CoLoR SAM

different positions in each subproblem. The new boundary values for these artificial
boundaries should be taken from fast convergent zones of a partitioning in which
this artificial boundary resides. If we only have two sets of partitions, there is only
one choice for each point on these artificial boundaries. The best partitioning and
choice of boundary values is very difficult to accomplish. Instead, we may plan a
few sets of partitions so that each point on the artificial boundaries belongs to a
fast convergent zone in at least one of the partitions. With more than two sets of
partitions, this goal is easier to be fulfilled. The same idea can be applied to the
elliptic operator L in any finite dimensional space. This implies that the multi—color
M can also be used to solve any linear system of equations which has a positive
definite coefficient matrix.

To simplify the notation, a description of the algorithm for a two—dimensional
problem is given here. The extension to higher—-dimensional problems is straight-

forward.

Let L,(2) be a Hilbert space with respect to the inner product

(u,v) = /n uv dQ,

and the norm
| ull=/(u,u),

where Q is a bounded, connected open set in R?. C)(f2) denotes the space of real
valued continuously differentiable functions on Q, where Q = QUT and T is the
boundary of 2. Let

a=(a,m), |a|=a1+az a,a;>0

lal
D* = —aL— u(®) = D%y,
9z gy’

- Then the Sobolev spaces H'(R2) and H'/?(T) are defined as

A
g H'(R) ={u]| D" e Ly(®),0<|al$1)
. ': .
*3 HYT) = {u|D% € LyT),0 < a [<1/2}
N
L)

]
e

L)

ok
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Particularly,
HY(Q) ={u|(uve H(R)U(u|r=0)}
H)(Q) ={u|(s€ H'(Q)U(u|r=g)}
Concider the boundary value problem
{ L(v) = -[pius)s — [Pau)y +qu =f, zeQ

(2.13)
u ll" =9,

where py,p2,9 € C1(Q), f € Ly(R),9 € HYX(T). It is well known that this problem
(2.13) is equivalent to the minimization problem

1
I(Qvu) = Eaﬂ(uiu) - Gﬂ(u)v u€ H;(F),
where
ag(u,v) = /ﬂ[plu,v, + pau, v, + quu] dQ,
G = .
a(w) = [ fud@
Construct a sequence of partitions of :
L {Q,-, )},
m: {0,

L: {of,....o®)}
such that
1. o'na? =, if i #j.
2.Vz€Q,3 i and j: z € QY.

Let Q) = (‘J le), it =1,---, k. EachII; is referred to as a color ¢;. So condition

(1.) means that any two of the subregions do not overlap if they have the same
color. For any v € H}(2) and Q(), a subspace $(Q),v) is defined as follows:

(2, v) = {u|ue H(Q)N(u=v, if z€Q-a))}.




WU bk ad Aal bal Aok Aol
- TR -wer hd
L) had Bl B g in AL Aol Aos Ao d A a A d A A -4 A o Aca i
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o For partition II;, the functional I(Q,u) can be calculated as follows:
, IQu) =3 IO u)+ I(Q -0 u) = I(c,u).
Jj=1

The multi-color #M is then as follows:

Algorithm. 1 Choose a initial guess u® ¢ H}(Q). We construct a sequence
M {4, ¢;} such that

u = {v] I(ci, w)}

% 50(0(") uli=1))

,_ andV I>0and J€[1,2,---,k],3 i such thati> I andc; = J.
n!"

¢

n Since i # j implies Q) n Q) =9,
' fe;

24 inf I(ci,w) = inf 1), w).
\ wEB(QLe) uli=1)) (ciw) Ewe.(mm,..u-u, (, P W)

Each I( Qf,c"), w) can be computed independently. That is where parallelism comes
oy from.

A rigorous complete proof of convergence is wordy. Here we present an concise
oy version of the proof.

5 From the construction of the algorithm, ¥ i > 0
I(Q,u") < I(Q,utD),

W If u denotes the solution of (2.13), then

—

69 =i} < —aa(® - u,u® - u)

-
NQ

$ = =[I(Q, u(3)) - I(Q, u)]

mq

o < SU(R,u(0)) - I, w)l.
R So there is at least one subsequence u(**) such that

) limu™ = 3. (2.14)
Ny
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From the construction of the algorithm and (2.14), i € H,(f2) achieves the minimum

t.r: in every subregion ij ) Now, let’s prove that u actually is the solution of (2.13).

Q_fl Let I'fj ) be the boundary of the subregion ij ), which is the ith subregion in

b color j. T is consists of two parts. First part is I'¥)(1) = TP UTq. It can be
f 2% empty if there is no common part in the boundaries of Ffj) and I'n. The second

. .J part is the so—called artificial boundary T'") (2). It is a union of the pieces which

;Q are located in other subregions (of different colors).

T

haC From the definition of %, we know that it is the solution of the following problem.

& L) =f, ‘e am.

:32 u(m) I ( = 9, X € FS:)(I)’ (215)

% VIR Ty, xeri),

'P\. n=12--,im,

::: m=12,---,k

"

3 where (™ is th n'® subregion in color C,, and u(™-1) are the solution for partition

T\i B II,n-1. The coupled problems (2.2) and (2.3) are the simplest case of this problem.

o First we know that the solution u of (2.13) is a solution of (2.15). It is also known

° that if the solution of (2.15) exists, it is unique. Therefore, we may summarize the

") above discussion as the following theorem:

W Theorem 2.1 For any initial guess ul® ¢ H}(Q) the sequence constructed in the

: E multicolor M algorithm converges to the solution of (2.13).

" "

) . . . . .

o The extension of this algorithm to a matrix problem is straightforward. We may
[ ] : (7) : : ()
7 replace the sequence of subregions ;' by a sequence of diagonal block matrices A4,

:.f of the original matrix A, which satisfy the following conditions:

‘e
Y

K. 1. Any two of the diagonal blocks do not overlap if they have the same color.

Y

. 2. Each row of the matrix A is covered by at least by one of the blocks Ag'}

p ?:-j Then the rest part of the algorithm is the same as the continuous case. The
2 convergence of the discrete version of multi—color #M is also analogous with the
‘ continuous case.
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B
P

. 2.3 Sufficient Conditions for Convergence
o
' o There are several proofs of convergence of #M [KK58], [CH62], [KCSQ85]. The most
*i general case was given by two Russian mathematicians Kantorovich and Krylov
-"r) in the 50’s [KK58]. They showed that five conditions together are sufficient for
s convergence of %M to a solution of a boundary-value problem *

gh s

o

-‘.\

2 { L(w) =/, x€Q, (2.16)
. ulr, =1, x € Iq.
;_ .‘;:‘; These five conditions are as follows:

T4 ol
™ .
:::;‘:' Uniqueness. Two solutions u and u’ which satisfy equation (2.16) in Q are bounded,
= have identical values on the boundary I'q (except, perhaps, at a finite set of
f_:' points) and are identically equal in Q.

oy

4

N Monotonicity 3. Two bounded functions u and u’ which satisfy equation (2.16)
- in  and have u > u' on T'g (except, perhaps, at a finite number of points)
T will satisfy u > u’ everywhere in Q.

Y
-;': Limit solution. The limit of any monotone and uniformly bounded sequence of
\

'j solutions to equation (2.16) is also a solution of (2.16).
:_.‘_: Maximum principle. A solution to (2.16) cannot have either a positive interior
X .i! maximum or a negative interior minimum. For linear problems this implies
W ! the monotonicity condition.

.. Continuity onto the boundary. If u = f on a boundary segment except perhaps

4 _,.:J‘

o

at a point P inside the segment, where f is continuous on this segment, then
the solution u(Q) for Q in Q approaches f(P) as @ — P.

-.'f'?-

T B

o
t .J

The numerical analog of %M is straightforward. We can discretize the problems
1.4-1.6, and then solve them numerically. Miller{Mil65] showed that the following

>

-..
ol

Fo g
.‘-

4 As mentioned in their book, this same proof can be applied to a more general functional equation.
$For linear problems, this condition can be derived from the maximum principle.
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o

conditions are sufficient for convergence of the solution of the numerical #M to the
3 original continuous problem:
"
)

:?'."‘ Existence of a continuous solution. The solution of the continuous problem

e 2.16 exists. This implies that the solutions of the problems 1.2 and 1.3 exist.
v .

'.':0‘: Existence of the discrete solutions. Solutions of the discretized problems 1.2
o and 1.3 exist.

kY
* Convergent discretization. Discrete approximations of 1.2 and 1.3 are conver-

::'\ gent to the continuous solution of 1.2 and 1.3.

i
..' L . .

::: Contraction mapping. There exist numbers Q; <1, @; <1, such that @,Q; <

W
b 1 and
[ ]

,: lur — @] < Que,

N luz = G2 < Qzeq,

-

{ where €, ¢; are perturbations of the boundary data on I'},I'}; &, &; are the

-, perturbated solutions which correspond to u;, and u;,.

:? For elliptic partial differential equations we can also express problem 2.16 in an

' »

equivalent variational form; then it is possible to prove that the solution sequence
R of the corresponding finite element method is a convergent minimization sequence.

b The independence between convergence and the the ordering of the solutions of

L)

¥, these subregions can be easily shown in variational form [KCSQ85].

“ We can also recast the numerical analog of #M as a modified matrix problem.
/- then prove its convergence. From analysis of the linear algebra analog of M for the
-'.:: model problem we can obtain many new results by applying classical acceleration

| i approaches in numerical linear algebra to this method. In Chapters 5 and 6 we will

.0, discuss these problems in detail.
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Chapter 3

Schwarz Splitting

In this chapter a more general model of $#M for application to problems in linear
algebra, Schwarz Splitting (or &), is presented. For a matrix equation Az = f, we
first introduce a Schwarz Enhanced Equation (or S8) A% = f. The corresponding
matrix A is called a Schwarz Enhanced Matrix (or S54). A necessary and sufficient
condition for the equivalence of the original equation and 98F is shown. In Section
3.3 a few splitting matrices of J9M are presented. In particular, the Schwarz Splitting
(or &) is defined. Then some relations between the eigenvalues of these splitting
matrices and the corresponding splitting matrix for the original matrix are shown.
If the original matrix is an M-matrix, then & is a convergent splitting. The original
M is equivalent to applying a block Gauss-Seidel scheme to the . It is clear that
other classical acceleration schemes can also be applied to this model.

3.1 Deflnitions

As we mentioned in our last chapter, the approach of #M to a problem is to modify
it to produce an equivalent enhanced problem, then to solve the new one iteratively.
It is not necessary to view MM only as a way of solving elliptic partial differential
equations. As we mentioned in the introduction, #M can be viewed as a general

methodology for problem solving. A similar idea has been applied to a nonlinear

problem arising in circuit simulations [Deu85]. It was suggested that the application
of $M to the system of ODE is promising. Here #M is discussed in terms of matrix
theory. In Rodrigue and Simon’s paper “A generalization of the numerical Schwarz
algorithm”, M is first recast into numerical linear algebra. Then many results
of the classical analyses in linear algebra [Var62] could be applied. This approach

22
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)
*"'t¢‘
N provided possibilities of generalizing and improving 3#M. We extend this thought
¥
i further to a general linear system of equations in this chapter.
'. ,.j': Consider a matrix problem:
&3
R Az = f, (3.1)
- ¢ where A is an N x N nonsingular matrix, f and z are /N vectors. A partitioned
-w: form of the equation (3.1) will be used in the rest of this thesis. A partitioning
N is defined by the integers ny,na,---,nz4+1 where ny; > 0, naiyq > 0! for all 7, and
L where
)\ n1+fl2+"'+n2k+1 = N. (32)
‘
X g: Given a set {n;}**! which satisfies (3.2), the (2k + 1) x (2k + 1) partitioned form
W of the matrix A is then given by
o A Aig o Avzen
Y Az Az - Azzkn
L a=| “ , ] (33)
5 : : :
»
1_' L Azeers Az 0 A1k
'.'»:. where A;; is an n; X n; submatrix. We always assume that the unknown vector z
v
- and the known vector f in the matrix equation Az = f are partitioned in a form
o consistent with A. Thus, if A is given by (3.3), then z is assumed to be partitioned
;,..) as
, T
o .’ z = (21,22, Taks1] (3.4)
-
o where z, is an n; x 1 matrix (column vector). A dual vector of z
s
d ~ T =
: % =[21,22,%2,23, T4, Ty Ts, ", T2k, T2k T2k41) (3.5)
¥
]
"‘: is defined such that: all even subvectors z3;, 1 = 1,- -,k are duplicated once in
o their places, and all odd subvectors remain the same.
j A partitioned matrix can also be represented by a directed graph. Consider any
) . .
e 2k + 1 distinct points Py, P, -, Paes1 in the plane, which we shall call nodes. For
:: every nonzero entry A,; of the matrix A, we connect the node P; to the node P, by
4
L I'We will explain the reason for this partitioning pattern later.
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CHAPTER 3. SCHWARZ SPLITTING

Figure 3.1: Directed graph G(A4).

means of a path ? PTI.’,-, directed from P; to P;, as shown in Figure 3.1. By relating
each path P,P; to the corresponding A, ;, the matrix A4 is associated with a finite
directed graph G(A). As an example, a dense 3 x 3 partitioned matrix

A Aa As

A=| A;; Az A3
Asy Asz Aaga

has the directed graph G(A) in Fig. (3.1).

If the operator L(u) in equation (1.1) is a linear second order elliptic operator,
then the discretized problem can be written as a matrix equation :

Ay A | A z; h
Az = || An | Az | An n|=|hHA|=F1 (3.6)
Aa | Azz Az z3 f3

The order of the unknowns is arranged so that [z;, 23] corresponds to the unknowns
in 4, [£3, 23] corresponds to the unknowns in §2; and [z;] corresponds to the un-

knowns in 3, which is the overlapped part of the two. The numerical #M for the

2For a diagonal entry A, # 0, the path joining the node P; to itself is called a loop. For an
illustration, see Figure (3.1).
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above problem solves the following subproblems alternatively:

[ A Agg Ig'.) - h + Ais J:(.'-1)
| Az Ag2 | | z$) ) L f2 ] | A2z | >
(3.7)
[ A A | [ 2] [ fi ] A ] g
. = + Iy’ .
| Az Ax | Lf(a')J | fa ] | A23 | '

It is not difficult to observe that this procedure is equivalent to a 2 x 2 block Gauss-

Seidel iteration for the following matrix equation:

An Az 0 Ap I, h

~ Ay A 0 A 7 -

A7 = 2 22 23 flz - fz - f. (3 8)
An 0 A Ap z, fa
Ay 0 Ay Az Z3 fa

From the convergence proof discussed in the last chapter we know that the procedure
(3.7) will converge, the solution of equation (3.8) satisfies ¥; = %}, and (%, Z2, Z3)7
is a solution of equation (3.6). This is to say that the dual vector of the solution
of (3.6) is the solution of (3.8) and vice versa®. We shall call the equation (3.8) the
Schwarz Enhanced Equation (or SBE) of (3.6) and the corresponding matrix A in
(3.8) the Schwarz Enhanced Matrix (or $94) of the matrix A. The formation of
SEM can also be illustrated in terms of a directed graph. As we mentioned before.
the original matrix is represented by the directed graph in Fig.(3.1). Let us split
node 2 into a pair of dual nodes (f’;, P;), and let the incoming path from P; point
to P, and the incoming path from P; point to P;.

The loop path of the original node is duplicated for both dual nodes (see Fig.
3.2 ). This new directed graph is called the dual graph for the SEM A.

This idea of forming a new equivalent problem can be generalized in two ways:
we may enhance the new enhanced equation recursively; or we may partition the

matrix A into a matrix like (3.3) and then enhance this partitioned matrix. Here

3Later we will prove that this conclusion can be true only when Aj; exists. For most approxi-
mations of an elliptic partial differential equation this restriction is satisfied.
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Figure 3.2: Dual graph G(A).

we only discuss the latter approach. The results of the following discussion can be
easily applied to the former.

Let the matrix A in (3.1) be partitioned in the form (3.3), where n; > 0 and
n2i+1 2 0 for all i. The reason for assuming nj; > 0 is that we are going to split
the node P;; and splitting a null node * is meaningless. On the other hand, a null

may say that a node P, is null if n; = 0.

:;;&: nonsplitting node can be used to cover the case of adjacent nodes. The case of
:: e splitting a node into three or more nodes can be covered by recursive splitting, but
’;g.:' there is little practical reason to do that. To form the Schwarz Enhanced Matrix
.).' A, we first split every even node Py into a pair of dual nodes (Py, f’,’,-),i =1,---,k,
::‘:3::‘: and copy every odd node P,;,; to a new node }‘52.'4.‘. The even nodes P;; are also
:'.i, called overlap nodes. The new nodes P; and P! are the nodes of the directed graph
e G(A) for the S A. Then for each path PJ—P.,,. in the original G(A), we will put a
s corresponding path (or paths) into the dual graph G(A). The rules are listed in the
s.j following table. The far right column lists six logical expressions, of which only one
: can be true for each path in G(A). After identifying the case for which the logical
" expression in the fourth column is true, we will add the path (or paths) in the third
. column to G(A). The corresponding entry for each path (or paths) is given in the
f. second column. Let S, and S, denote the sets of odd numbers and even numbers,
E :E ‘Here we define a node as null node if there is no path to or from this node. Equivalently, we




N

g

3.1. DEFINITIONS 27

respectively. We have the following table:

Case Entry | Path Condition

Case 1 | Ay ﬁ’, (I=m)n(leSs,)

Case2| Ay |BB BE |(=m)n@eS.)

Case3 | A | BiPa U£m)n(€S)N((meS,)u(l>m)
Case 4 | Aim ﬁg;,, (I#£#m)n(leS,)n((meS.)N(l<m))
Case 5 | Aim Iv}m ";?m (I#m)n(leS)n((meS,)u(l>m))
Case 6 | Aim IJ,_I;m P',_T-;. (I#m)n(leS)N((me S.)n(l < m))

We may also interpret this table graphically. As in Fig. (3.1) and (3.2), we may
lay the 2k + 1 nodes in a straight line, with the nodes in numerical order. Then we
split each even node into P.‘(‘- and 132;, one by one, starting from P,. All incoming
paths from the left side of P;; will point to Pj; and all incoming paths from the
right will point to P,;. The outgoing path from P;; is then split into two outgoing
paths for both new nodes and will point to the same destination as before. All loops
of the overlapped nodes will be duplicated for both dual nodes. After we split all
even nodes, the new graph is the dual graph G(A). Notice that the dual nodes of
each pair have exactly the same outgoing paths, with the exception of the two loop
paths. The matrix A constructed according to the above rules is called the Schwarz
Enhanced Matriz (S9M) with respect to the partition (3.3), and the corresponding

matrix equation

~

Az =f (3.9)

is called the Schwarz Enhanced Equation (SE), where f is the dual vector of f.

Here is an example of a 5 x 5 block matrix equation and its SE:

| Ay A | Aia A Ais | [ 2] [ fi W

An | Az | Aaa A | Ass I3 fa
Az = | Ay | Ass Az Aax | Ass | =| f|=/
Ag | A As | Au | As T4 fa

L Asi Asy Asa | Asq Ass U L Ts | _fs ]
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An An 0 Az A O Ays 1 [ I ] [ fi ]
An A | 0 Az Ay 0 Ags T, fa
An 0 | Az A Ay | 0 Ay A f2
AZ=| Ay 0 |An Ax Au| 0 As ||z |=|fi|=F
Aa 0 |An An Aul| 0 Ag z4 fa
Aq 0 Ag Ais 0 | Au Aes T4 fa
| A 0 Asz Az 0 | Ase Ass s | [ fs ]

If we merge each pair of dual nodes into a single node, and fold each pair of paths
from the same dual pair into a single path, the resulting graph is identical to the
original ope. From the construction of S, it is easy to see the following result:

Lemma 3.1 If vector z = (21,23, ", Tak41)” 13 the solution of equation (3.1), then
its dual vector  is the solution of S A% = f, where f is the dual vector of f.

The matrices Aj; 2,1 =1, -, k are also called overlapped blocks. If two Schwarz
enhanced matrices B and C of the same matrix A, for which the overlapped blocks
are By, j and Cyi2i,¢ = 1,- -+, k, respectively, have such a relation that each Bj;
is a submatrix of the corresponding Cy,;, then we say C has more overlap than
B. This overlap is closely related to the overlap area of the solution regions for the
subregions mentioned in the introduction. As we have shown, for the continuous
model problem, if the amount of overlap increases, then the convergence rate will

increase too. For the matrix model we have a similar result.

3.2 Equivalence Theorem

A necessary and sufficient condition for the equivalency of equation (3.1) and its
SEE (3.9) is given in this section.

Theorem 3.1 Let M(A), A(A) and MA,),i =1,---,2k+1 be the sets of eigenvalues
~ - k
of A, A and A;,i =1,--. 2k + 1, respectively. Then A(A) C A(A) U( l:,ll A A22)).
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Proof. Let A be an eigenvalue of A and
= (Ela 53’521 o 752k+1)

be the corresponding eigenvector. Substituting Z into the equations which corre-

spond to the dual nodes P}, and P, , we have

ZAz,"jij —Al‘z', (3.10)
ZAzj'jEj = AZy. (3.11)

As we mentioned in the last section, only one term is different in the left hand sides

of the two equations. Subtracting (3.10) from (3.11), we have:
A2i.2i(5'2.' - 525) = A(E;, - 52,’), 1= 1,---,k.

If 25 — T2 # 0 for some i, then we have )\ € U A(Azizi). If X ¢ U A(Aai2i),

then Z;; has to be equal to zy, fori =1,--- k. Therefore, Fisa dual vector of
T = (Z1,%2,%3,- -, Tak41)7, which will satisfy equation
Az = Az

Thus A € A(A), which concludes the proof.

Define 5F (3.9) as equivalent to (3.1) if A~! exists and the solution vector F is
a dual vector of the solution z of (3.1). Similarly, we say that M A is equivalent
to matrix A if A~! exists. With this definition and the result from Theorem 3.1 we

have

Theorem 3.2 If a matriz A is a Schwarz enhanced matriz of the nonsingular ma-
triz A, then the following are equivalent:

1. Matriz 4 is equivalent to matriz A.

2.0¢ U MAna)

Proof. If 0 ¢ U A(Az ), then from Theorem 3.1 we know A~! exists. Applying
the strategy used in the proof of Theorem 3.1, we can show that the solution ¥ of !

AT = f is a dual vector of the solution z of Az = f.
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Now we show that 0 ¢ U A(A2zi2) is also a necessary condition. Suppose there
1s a j such that 0 € /\(Ag, 2,) We know that Aj;,, is singular. Let the rows of

matrix Asj2; be ri,i =1,---,n;. There is a constant vector a = (a1,---,an,)T #0
such that:

Z’ ary = 0.

=1

Let the rows of the SB¥ A for the dual nodes f’gj,f’{_,- be b; and ¢;,i1 = 1,
respectively, where

bi = (elv"'ach—lyrl" 07£2j+lv"'i¢2k+l)s

C, =(ely"'962j—l’07 ri762j+la"',e2k+l)-

From the definition of a SEM, the only differences between rows b; and ¢; are in the

positions where the r; are located. It is easy to verify that:

ny ny
Zalb, - Za;c; =
=1 =1

It means that A is singular. The proof is complete.

If a matrix is a positive definite matrix or an M-matrix®, any principal minor of

this matrix is also a positive definite matrix or M-matrix. Thus, we immediately
have

Corollary 1 Any SEMof a positive definite matriz A is equivalent to A.

Corollary 2 Any S8Mof an M-matriz A is equivalent to A.

3.3 Splittings of Schwarz Enhanced Matrices

From the results of the last section we know that the solution of Az = f is equivalent

to the solution of A7 = f. Here we will analyze the application of some classical

SAny n x n matrix A = (a,;) with a;; < 0 for all i # j is an M-matrix if A is nonsingular, and
A=t >0.
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splitting techniques to SEM. If we want to solve the matrix equation Az = f where

20 A4 is an n x n nonsingular matrix, we consider expressing the matrix A in the form
N
= A=M-N, (3.12)
_.. where M and N are also n x n matrices. If M is not singular, we say that this
,':'.‘ expression represents a splitting of the matrix A, and associated with this splitting
- is an iterative method
" Mz = Nz(®]) 4 £, (3.13)
,.‘ Most important iterative methods can be described from this point of view. It is
{:: also called a linear stationary method of first degree. The matrix M~!N is called
"“K the iterative matriz of this splitting. The convergence behavior of this splitting
is decided by A(M~!N), more specifically, by the spectral radius® of the iterative
:Q:I matrix M~!N and the distribution of the eigenvalues of this matrix. Particularly,
:._j we call a splittings a convergent splitting if p(M~'N) < 1 holds. If the diagonal
:: entries of the matrix A = (a;;) are all nonzero, and we express the matrix A as the
. matrix sum
i A=D-L-U,
Lo,
o where D = diag(ay,1,a2,2,**,8nn) and L and U are , respectively, strictly lower
J and upper triangular n X n matrices, then the following choices
1 }.
g Mp; = D; Np; =L+,
:v‘. Mpg= D-L; Npg =U
)
‘ : give the point Jacobi and point Gauss-Seidel splitting, respectively.
W Let A = Mp; — Npy be the point Jacobi splitting of M, and A;; = D, - L, —
o Ui,i =1, ---,2k +1 where A,, is the diagonal block in (3.3). The eigenvalues of the
My iterative matrix M ;}ﬁp_; and the eigenvalues of the point Jacobi iterative matrix
@ of A have the following relation:
f: $The spectral radius p( A) of a matrix A is defined as
0
o
. ,;:: p(A) = max | X |
kes
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LV

. Theorem 3.3

N
e —_— k
o~ MMpjNps) € MMpiNps) U (U MDZ (Lai + Un))l-

," =1

»

,,' . . . . rr~17%7 . . -1

‘?-f-“ Proof. Notice that the iterative matrix Mp;Npy is a SPM of the matrix Mp;Np,
t—;;) with respect to the same partition of A in (3.3). Apply theorem 3.1 to this point
R} Jacobi iterative matrix, the proof is complete.

i This theorem shows that the point Jacobi splitting of SBM does not change the
v 'j performance of the point Jacobi splitting of the original matrix.

:: ' For the block Jacobi iterative method in which the matrix A is partitioned into
¢ ~
A ""' the form of (3.3), a conclusion similar to theorem 3.3 can be derived. Let A be the
e SEM of the matrix A, the block Jacobi splitting for this partitioning of A be

oY

2% A= Mg, — Ny,

RThd
' | and the corresponding block Jacobi splittiag of the M be

s-‘I, Ty =

A A= Mg, — Npy,

o

;) where Mp; = diag(A1,1," -, Ak+1.2441) and Mg is $M of the matrix Mp,. Then
2l for this special block Jacobi splitting we have
| -_';-. Theorem 3.4
) .'\i'
x MMz} Nes) = N MzjNpy).
’_)-.
2

‘ o
‘, :E. Proof. As in the case of the point Jacobi iterative matrix, this block Jacobi iterative
« 7 matrix of A is the M of the block iterative matrix of A. Since the diagonal
‘ f':' blocks of both iterative matrices are zero, the second term on the right hand side in
El’ Theorem 3.1 vanishes; and thus the equality holds. If we split the diagonal blocks
.';“: as A;; = M, — N, and let M}, = diag(M,, -, Mak41), then we have a more general

result than Theorem 3.4:

. '-f”-f'(‘".', \lJ‘J'
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Corollary 3

k
N5~ Nps) € MMy, ™ Np,) U (U MM, N3).
Theorem 3.4 tells us that this particular block Jacobi splitting of a SEM does not
improve the convergence rate when we compare it with the corresponding splitting
of the original matrix A.

For the point Gauss-Seidel splitting of the dual matrices we also have a similar
theorem. Let A = Mpg — Npg be the point Gauss-Seidel splitting of a M. It is
not difficult to see that Mpg and NPG are the SBM of the matrices Mpg and Npg,
respectively. The following result can easily be obtained from the proof of theorem

3.1.
Theorem 3.5

k
MMpENpc) © M Mp&Nea) U (| M(Dai — Lai)™'Ux)).

i=1

This result shows that if we relax each subproblem only once, the convergence
factor is independent of the overlap’. It is interesting that this non-positive result
has a very useful application. When we use the multigrid method in a composite grid
environment, one important question is how the overlap will effect the convergence.
There are some experiments (see [ST82]) which show that the amount of overlap
does not affect the convergence, and thus we can reduce the overlap to a minimum?®
in order to cut down the cost of each sweep. This theorem gives us an explanation.
Another extreme is %M, in which case the relaxation is carried out to convergence of
the subproblem. Then the convergence factor is exponentially related to the overlap
(see introduction). We might expect that the effect of the overlap on the convergence
will increase when we increase the relaxation sweeps in each subproblem.

So far the splitting techniques we have discussed are not very promising. But
this picture can be changed. Consider a new partitioning of M, let

A= Ms - Ns, (3.14)

7If we relax the subproblems more than once then the conclusion is not valid
8There are other factors which must also be considered. For example, the amount of overlap
must be sufficient to ensure the accuracy of the interpolation.
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3?“1

: where Ms = diag(S1,Sa2,- -+, Sk), and
LNF
’:). r
A0 A Aig
g $ Sl = ’
i:; 2 | A21 Az
" ) [ Anz Avgin Asizies
gt .
o ? Si = | Azisrzi Asipr2i4r Aziprziea |, =2,k =1
1 L Aziv22i Azisair Azisa2is2
g r
B Azk2e A2k

Sy = .

"'\,:. | Azks1,26 Azks1,2k41
::‘.. We define the splitting (3.14) to be a Schwarz Splitting (&). We should always
j::':'. relate a Schwarz splitting to the corresponding partition. A different partitioning
Alget,

will lead to a different &. From this definition we know that a ¥ is essentially a
Loy block Jacobi splitting for a particular partition of SgM, and AM is the Gauss-Seidel

“j splitting which corresponds to this partition.
%-" : Very often problems in the biological, physical and social sciences can be reduced
W
: to problems involving matrices which have some special structure. One common
$‘_ situation is where the matrix is an M-matrix. As we mentioned in last section, any
:_‘: SEM of an M-matrix is equivalent to the original matrix. Now we have the following
K
‘,’o.. result:
,_r'..)p Theorem 3.8 A Schwarz splitting of any Schwarz enhanced matriz A is a conver-
.. % . . - . .
."::‘ gent splitting if A is an M-matriz.
K
.‘:.-:: Proof. We define a splitting A = M — N as a regular splitting of 4 if M is
d

® nonsingular with M > 0, and N > 0. A well known result for the regular splitting is
"*x::, that if A=! > 0, any regular splitting of the matrix A is a convergent splitting[Var62].
"‘f:: It is clear that if A is an M-matrix then the & is a convergent splitting. By the
-y comparison theorem for M-matrices?, we can also derive a comparison relation
i between the splittings we discussed above.
550
:‘_‘:‘i SLet A = M; — N} = M3 — N, be two regular splittings of A, when A=! > 0. If Ny > N, then
;ﬂi\ the spectral radii of the matrices M~ N, and My ! N3 have the following relation:
NS

455 oM N > oM N)

(Var62)

l:f:
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Theorem 3.7
o(35'Ns) < p(35, " Nay) < B(M35N81) < 5(M73Neps).
Proof. From the construction we have
Nps > Npy > Ng; > Ns.

Application of the comparison theorem concludes the proof.
From this result, we know that & is the best splitting among these splittings.

In Chapter 5 we will derive some quantitative results for & of the model problem
of elliptic PDE’s.




Chapter 4

Template Operators and Exponential Decay

In the last two chapters, we have shown that 4M or & can be applied to large
classes of problems, but we have not addressed the issue of how to recognize the
problems for which $4M is most suitable. Now we will reexamine the analysis of the
model problem in the Chapter 2 from a different point of view. More specifically, we
will study a particular behavior of the inverse of the same operator, the ezponential
decay phenomenon. First, the Green'’s functions for the model problem in 1-, 2-
and 3-dimensional solution space are discussed. The relation between the decay of
the Green'’s function and the convergence speed of #M is studied. Then in Section 2
the decay of the “discrete Green’s function” of a matrix is studied. Specifically, the
exponential decay of a banded matrix is examined in detail. We have found that the
matrix is not a good structure to study this problem. In Section 3, a new structure,
template operator, for a linear operator in a finite dimensional space is developed.
In the last Section, the concepts of influencing and influenced wavefronts are intro-
duced. Then some estimates of the norm of the wavefront are presented. These
results provide a theoretical basis for determining when these Schwarz techniques
can be used successfully.

4.1 A Key to the Success of SAM

In Chapter 2, the analysis of %M for the model problem shows that if the over-
lap increases the convergence factor of #M improves exponentially. Moreover, the
higher the spatial dimension, the bigger the improvement. If we combine these
analyses with some other techniques, M or & can be developed to be as compet-
itive as other powerful methods. One of the key facts which makes #M become

36
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an optimal iterative method is the exponential relation between the overlap and
the convergence factor. More specifically, when the overlapping area increases the
convergence factor decreases exponentially. For a Poisson equation, we may also
use the decay of the Green’s functions to explain this result more intuitively. As
we know, the solution u(P) for the model problem with homogeneous boundary

condition can be expressed by the corresponding Green'’s function as

u(P) = [ G(P.Q)f(Q)dQ.

The influence of the forcing function f(Q) on the solution u(P) is decided by the
value of the Green’s function at (P, Q). The Green'’s functions for model problems

in one-, two— and three-dimensional solution space are as follows !:

1. One dimensional problem (0 <z < 1):

Gz = | 10 for z<¢,
’ (1-2z) for z2>¢.

2. Two dimensional problem:

1 1
G(z,y,6,n) = =In
20z =€ +(y—n)
3. Three dimensional problem:
1

G 'Yy 2,8, 7, = .
R e oy e o e

Let P represent z,(z,y), or (z,y,2) and Q represent £, (&,n), or (£,n,(). We
may observe that when the distance between P and Q increases, the influence of
Q on the solution at P decreases. If the overlap is increased, the artificial bound-
aries are moved away from the boundaries of the subregions. Consequently, the
contributions from the error on the boundaries of these subregions diminish ezpo-

nentially with the increasing distance. This observation is not only true for the

Here we list the Green’s functions for 2- and 3-dimensional Poisson equations in infinite domains
which are easier to explain. The Green's functions for finite domains have a similar decay but are
mote complicated.
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Poisson equation. Actually, it appears in many physical processes. The decay of
the Green’s function is just a mathematical description of a common physical phe-
nomenon: that the influence between two points will weaken if the distance between
them increases. This suggests that %M and & can be applied to many important
applications successfully. Late on, we will explore this issue mathematically.

Another observation which can be obtained from these Green’s functions is that
the higher the spatial dimension the faster the decrease of the influence!

The inverses of the matrices A associated with Poisson’s equation with Dirichlet
boundary value conditions give “discrete Green’s functions”. A~! should be a good
approximation to the Green’s function (See Birkhoff’s book “Numerical Solution
of Elliptic Problems”). Thus a similar decay behavior should be true for these
inverses?. This observation motivates us to seek more kinds of operators for which
the inverse has such a decay property.

4.2 Exponential Decay and Banded Matrices

The exponential decay of the off-diagonal elements of the inverse of a diagonally
dominant tridiagonal matrix was observed decades ago[Ker70]. There were several
papers which discussed the topic of the exponential decay of the inverse of a banded
matrix[Dem?77], [dB80], etc.. In summary, an estimate of the form

| @i |< C¥ (41)

was given in these papers, where a;; is the element of the inverse of a banded
matrix. The claims in these paper are somewhat misleading. The first issue is: can
we guarantee a decay from (4.1)? The answer is no! Without any further conditions
on the linear operator the above estimate provides us with no useful information.
There are two pitfalls in this statement. First is the “constant” C. In the following
example we will show that C can be so big that an exponential increase may happen!
The second pitfall is the decay term 4!-/|. Even though we do have ¥ < 1 here, ¥

is a function of the order of the matrix n in question. For example, v = 1/(1+n~?)

2In next chapter, we will prove that these conclusions can be derived for discrete model problems
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for a matrix derived from the model problem. So we will have v = ¢-2, a nonzero

N limit, as n — oo. These two factors lead to a bound which is so weak that virtually
u

¥ anything can happen. Here are some counter examples. The first is:

0

? -2 1

d -2 1 0

B

& -2 1

]

A=
0

4

» -2 1

: i -2 1

Jnxn
f
It has an inverse:
: F W
2 1

M 4 2 1 0

N 8 4 2 1

X A-l =
N

o

'y . .

"y

I. 2"-1 ... 2 1

4 on ... 21

N - Jnxn

- The off-diagonal elements of the inverse actually increase exponentially. People may
argue that this matrix is not stable 3. Imposing a stability condition only solves
1

r the problem of the big constant C. The second problem still exists. The following
2 example is derived from a boundary value problem for the one-dimensional model
L

': IHere we need to consider A to be a family of matrices with respect to the size n, or the mesh
. size h, if we want to discuss the stability. A commonly used definition of stability in this context
" is that the norms of the inverses for this family of matrices are bounded by a constant which is

independent of n or A.

Emar ol') .- ygw AP D) '.y" .‘ .
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problem. This matrix is symmetric positive definite, but its inverse still has a

n:: growth away from the main diagonal along some rows and columns.
3
D

092 -1 ]

-1 2 -1
'_f' "1 2 —1 0
. :
F A - ) ’
’4
f:’

0 -1 2 -1
L 12 Jiomo

50 45 40 35 30 25 20 15 10 5 |
45 414 36.8 32.2 27.6 23 184 13.8 92 4.6
40 36.8 33.6 29.4 25.2 21 16.8 12.6 8.4 4.2
35 32.2 29.4 26.6 22.8 19 152 11.4 7.6 3.8
30 27.6 252 22.8 204 17 136 10.2 6.8 3.4
25 23 21 19 17 15 12 9 6 3
20 184 16.8 152 13.6 12 104 7.8 52 2.4
15 13.8 126 114 102 9 7.8 6.6 4.4 22
10 92 84 76 68 6 52 44 3.6 18
| 5 46 42 38 34 3 24 22 18 14

AT =

Both examples have shown that band structure does not guarantee decay in the
inverse. Here is another example. The following matrix is not banded(!), but its
inverse shows an interesting decay. If we arrange the elements of any row or column
of this matrix on a circle with equal spaces and think of the original diagonal

element as a central element, the elements on this circle decay away from this

central element. This matrix is derived from a periodic boundary value problem.
All these examples show that band structure is not a good predictor for the decay of
its inverse. Furthermore, band structure is also related to the ordering of the matrix
in question. If we reorder a banded matrix as a random sparse matrix, the decay

still exists, but it can not be described in terms of distance from the main diagonal.
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This suggests that the decay is essentially caused by a locality or compactness of

an operator which is independent of the bandness of the matrix or the ordering of

the variables.

[ 1.702
1.287
1.001
8143
.7096
6758
.7096
8143
1.001
| 1.287

Particularly, for

[ 2.1
-1

L —1

1.286
1.702
1.287
1.001
.8143
.7096
.6758
.7096
.8143
1.001

-1
2.1

1.001
1.287
1.702
1.287
1.001
8143
.7096
.6758
.7096
.8143

operators in

-1
-1 21

.8143
1.001
1.287
1.702
1.287
1.001
.8143
.7096
6758
.7096

-1

.7096
.8143
1.001
1.287
1.702
1.287
1.001
8143
.7096
.6758

-1 21

6758
.7096
8143
1.001
1.287
1.702
1.287
1.001
.8143
.7096

~1

.7096
.6758
.7096
8143
1.001
1.287
1.702
1.287
1.001
.8143

-1 ]

-1
2.1

8143
.7096
6758
.7096
.8143
1.001
1.287
1.702
1.287
1.001

< 10x10

1.001
.8143
.7096
.6758
.7096
.8143
1.001
1.287
1.702
1.287

1.287 ]
1.001
8143
.7096
6758
.7096
8143
1.001
1.287
1.702 |

a high dimensional solution space or for operators

which are derived from the finite element method, the concept of band can no

longer characterize the locality of the operator.

The second issue is how to define a concept of distance between nodes which is

meaningfully related to their influence upon each other. Essentially, the purpose of

introducing the concept of exponential decay is to characterize the decreasing influ-

ence as the distance between two nodes* increases. Using a matriz data structure.
the exponential decay is characterized by the decrease of the off-diagonal elements.
For one-dimensional problems, this decay gives a good characterization of decreas-
ing influence. But for higher-dimensional problems, this characterization is not

‘Here we adopt the terminology node and distance from the graphical representation of a matrix.
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3
: adequate. For example, consider the Dirichlet problem of a Helmholtz equation
L
A
S Au — au =f7 zE€E [01 1] x [03 1]»
E \ﬁ\
A u Ir = g,
n\i‘)
‘O . . .
2~ where a = 0.00278. Let the grid size be 1/6. Using an nine-point stencil, we can
;.';' construct a 36 x 36 diagonally dominant, banded, positive definite matrix. We list
h the first column of the inverse matrix in the following table. Each item in the table
e has been multiplied by a factor of 10*. The superscript of each number in the table
“'_:";": is the row number of the elements in the inverse.
A ".
i
e 568 '{162 2| 59 3| 26 4| 12 5| 5 ¢®
A 162 7129 8| 69 °[36 2|18 118 12
e 59 3|69 14|52 1333 16|18 17[g 18
'—5 26 1°| 36 2033 2|24 2|15 B[7 2
iy
o 12 )18 |18 27|15 8|10 #® |5 ¥
I 531 832 833 734 535238
b
.:j.; It is easy to see that the off diagonal elements decrease in an oscillatory manner,
=73
ONE since the enforced ordering has destroyed the topological relationship among these
S variables. Measuring the distance between two nodes by the difference of the row
)
\{.: and column numbers here is not suitable to characterize the influence between them.
\l
: ,'fxl But if we imagine a center in the upper left corner of this table, the elements decay
> monotonically and exponentially in a wavefront form.
;_: After a careful study of these issues and counter—-examples, we have found that
o,
20 the abstract data structures vector and matrz prevent us from seeing important
v "'.-\
TN features in many physical problems. Actually, in a recent paper, Demko [DMS84]
- @ had noticed this limitation of the matrix structure. A linear operator in finite
‘;'\. dimensional space is often a discrete approximation of a continuous operator for
.f{:. some particular application. Instead of solving the original problem in the entire
::::': solution region Q2 (say in R¥, where k usually is 1, 2 or 3), we choose only a finite
o number of nodes (or points) 01,03, - -, 0, in Q and try to find the solutior- on these
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nodes. A discrete approximation of the original problem
Az =b

is then formed, where z = {z,} is the set of unknowns defined on the set of nodes
O = {0;} and A is the discrete approximation of the original continuous operator.
On the one hand, z; is a component of an n—dimensional vector. On the other.
each z; is also associated with a node o; of the solution region 2 in R* or some
other solution space. In an abstract vector space, the elements z, are given a forced
linear ordering which in general cannot adequately represent their positions in the
solution space. The corresponding data structure for the linear operator in this
space is represented by a rectangular matrix. Again, the positions of the coefficients
in any one of the rows or columns have little relation with the positions in the
solution space. Generally speaking, these abstract data structures have successfully
represented the topology of the problems in one spatial dimension and are a good
theoretical tool for many analyses. But for operators which are derived from higher-
dimensional problems, the enforced linear ordering of the unknowns in the matrix
structure has destroyed the proximity relations of the variables and the compactness
of the operator. This is an example of how our thinking and theory has been
influenced by sequential filters which have disfigured many physical features in a
particular application. Since sequential arithmetic and two dimensional scratch
paper were the means to study mathematics a few hundreds years ago, it is not
surprising that people proposed the matrix data structure for the linear operator

at that time. Now, the parallel age has come. It is the time to free ourselves from
this filter.

4.3 Template Operators

In the course of this study, J. Oliger suggested finding a new structure which would
preserve the topological structure of the original problem. The discussions led to
a new vector space — Template vector space 7! and a new structure of the linear
operator — Template operator. Most of the linear operators in finite-dimensional

space are derived from discrete approximations of continuous operators. The main
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idea of these new structures is to maintain the primary topological structure of the
original problem in the discrete approximation. In this way, many characteristics
of the original continuous problem can also be easily seen in the finite dimensional
approximation.

Let 0y,02,---,0, be n nodes in a solution region {2 which usually resides in
R¥, k = 1,2 or 3 5. These nodes usually are the positions on which the discrete
approximations of a continuous problem are sought. Let © denote the set of all

nodes o;.

Definition. 1 A template

T =<K 01,03,"+,0n >

is a topological structure of the set O in which all nodes o; maintain the same

prozimity relation with each other as they have in the solution region Q.

Intuitively, T is the pattern of the distribution of the set . For example, there
are four templates in Fig. 4.1. They all have the same number of nodes, but they
are associated with four different topological structures. The first three come from
R, R? and R3 respectively. The second and fourth templates are both from R?, but
they have different topological relationships among the nodes. We consider them
to be different templates.

Given a template T, construct n Cartesian products of R* and o;, S; = R’ x o,

1 =1.2,---,n, where R* is an s-dimensional vector space. Now define set
T =81 xS %+ X S,
Each element in 7;* consists of n ordered pairs®:
(< 21,00 >,< 22,00 >, -+, < Tn,0n >).
If there is no confusion, we may also abbreviate the notation as

{Iowxoz"“’zo..},

$ Actually, Q can exist in any space. A
To simplify the typesetting, we will not express all the following concepts by their real topological
picture, but by a linear array of n ordered pairs.
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0 0 03 04 Os Og o7 os
® @ { ® @ ® @ @
r—
o7 Os
——t
O4 Os 2}
[ —&
1% %] 2]
Os
Og
1% %]
o7 Os
Os o8
o3 O4
(%] (7]
Figure 4.1: Four different templates
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where z; or z,, are s-dimensional vectors. In physics, z; or z,, can be interpreted

as the state variables for node o;. Each z; or z,, is defined on the node o; on the

template T.

A template vector space which we may abbreviate as template space over

R’ is the set 7' with operations, addition and scalar multiplication, which are
defined as follows: let

=(< 71,01 >,< 23,03 >, , < Tp,0, >),

= {zo”xozy"'azo..}a

=(<y,00 >,<¥2,00 >, +,< Yn, 0 >),
= {yo,,yo,,'--,yo..},

and

zT+y =(< Ty + %1,0 >y < ZTn+ YnyOn >),
= {301 + Yoyt s Top +yo..}a

az = (< az1,01 >,< az3,03 >, ++,< QZp, 0, >),

= {az,,,azo,, - ,az,,}.

Under these definitions, 7.’ is a linear space.
Each element z € 7! is called a template vector.
For example, Fig. 4.2. presents four template vectors which are associated with

the corresponding template in Fig. 4.1.

Let 3 denote the summation over all nodes o; € O. Define the operation of
0,€0

scalar product of two template vectors z and y as follows:

(.’L‘, y)T = E (zon yo.‘)’

0, €0

where (z,,,Yy,,) is the scalar product of two s-dimensional vectors. We may in-

tuitively think of this operation as matching the two template vectors together,

“w
e "4 t vy X ¢
”‘ P ' J n"’o- .'G’ !‘:. *‘0 W, "u ¢" W, " 5.' 1“1* ! DU " "’ Y “' SERDIIN, n"""h‘ R 3000 e.‘ (RN t" N !l. A c‘.’o" it "'
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z(01) z(02) z(03) z(04) z(0s) z(0s) z(o7) (0s)

) ° ® o ° ° ° °
r—e
z(or) |2(os)

z(04) [2(0s) |2(%)

L —e

z(o1) z(02) z(03)

z(os)
z(0s)
z(o7) z(os)
z(os) z(os)
z(03) z(o4)
z(o1) z(02)

Figure 4.2: Four different template vectors
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"

My
i forming the scalar products for the matching pairs, and then summing the prod-
_.3.:«‘ ucts. By the length (or norm) of a template vector in this space we mean the
? " quantity

2484

i I zll=V(z,2)r.

1

;‘ It is easy to see that 7.’ is a Euclidian space under this operation.

B

i" In order to simplify the notation, the following discussion will assume s = 1. Let
N

:::‘ T, denote 7.!. Thus there is only one state variable on each node. In the appendix,
D

- we will remove this restriction and generalize to other spaces.
;3" Given a template vector space T,, a template operator space over T, can be
*'{C introduced as follows: let

::. Tn=<01,02,“',0n>

X

s be the template of 7,. Construct n Cartesian products

% Qo':'rleol'ai:la"'vn
I
o Let

RO L=QixQaXx X Cn

o7

o Each element L € £ consists of n ordered pairs

o

J =[<Rl,01 >7<R2v02 >v"°,<Rruon>]l

o;'
’; or simply

\

:" L=[R017R027"’aR0n]l
L0 |

) where R; or R,, is a template vector in 7;, associated with the node o; in the template
o T. .

iyt . . . "

¢ jcﬁ A template operator space over T, is the set £ with two operations addition
‘ "“; and scalar multiplication which are defined as follows: let
- @
; j Ll =[<R1,01 >a<R2’02>a"'7<R“’o">]l’
‘.': = [Ro1 ) R0:9 Tty Ro,.]ly
S
.:‘_-f "Here the subscript [ of L means this expression is a left form of a template operator. Late, we
- " will introduce its right form
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= (< Ry,01 >, < Ry,09>,-++,< Ry, 00 >,
= [ROI’EOQ""’ROn]h

and

Li+L; =[<Ri+Rio>,<Ra+Ruo0n>)
=[R°1 +R01""’R°n+ho..]ly

al =[<aR),,00 >, < aRz,00 >, +,< aRy,0n >]i,
= [aRonaROza ) aRo,.]l-
Under these definition, £ is a linear space.
Let
= {zonzoz)'”a:l"On}
be a template in 7, and
L= [RonRona"'vRon]l

be a template operator in £. Define the operation of L on x as follows:

y =Lz
= [Roy, Ropy++ -, Ron iz
= {(Ro,,z)'r,(Ro,,I)f,--' v(Ron,I)T}

where (R,,, z) denotes the scalar product of the template vectors R,, and z. We see
that y is again a template vector in 7,. Under this definition, L is a linear operator,
mapping 7, into 7,. In another words, L maps z to y, and y is the image of z under
this mapping. L is called a template operator of the template space

R, is called an operating template or input template of the template op-

erator L for node o;. Let [, (0;) denote the component of R, associated with the
node o, so that

RO. = (< 10-(01)’01 >1< loi(02)10'2 >, ,< lo.(on)a On >)-

l,,(0;) is called the center element of the operator template for node o;.

lil
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Ts(@) Jley(on)

|
|
i I8 "

5,\ : 05(04) 105(05) 105(06)
Iy !
N ¢l
': N los(ol) 105(07) 105(03)
)
g‘:' An in-web for node 5 in second template space
R
A lo, (07) loy (08)
N 1
o
o
o
"_-_-. lo,(01) l5,(02)
i__-; An In-Web for Node 1 in Fourth Template Space
-{“:
W . .
: Figure 4.3: Two in-webs
g,
s;'::o
o Given an operating template R;, we may construct a directed graph in which
:::: for each
98 Ioi(oj) #0
Vi
R
we put a path from node o; to node o;. This graph is a picture of how the operating
19. template collects the information from the nodes which have non zero coefficients
'
N;'.‘: l,.,(0o;) and forms the value of the image y at node o;. We call this graph represen-
o tation of an operating template an in—web of the template operator for node o;.
®x Figure 4.1 shows two examples of in-webs. The in-web in the first picture, with
O four paths to node 5 from its neighbors, corresponds to a 5-point stencil for node
:, ‘ five.
o
o _f' The structure of the left form of a template operator for the second template
A ':
e
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e Figure 4.4: A template operator in the second template space
v
, ' space in Fig. 4.1 has the following arrangement:
]
o
IS Ro R,
4‘.:: Roc Ros R"O
'
K > Ro, RO) RO:
By expanding R,, to unveil its internal structure, we may obtain the the picture in
5:, Fig. 4.4:
- If we map the template vector to a conventional vector (using the same ordering
. as the nodes have), then the template operator corresponds to an n x n matrix as
i
i
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r
|
follows: X . L
loy(01) loy(02) -+ lo(0n)
: (@) lm(0d) =+ l(on)
. !
S A=
|
: ‘
"E L loa(ol) 100(02) et lon(oﬂ) Jnxn {
' It is easy to see that the operating template R,, for node o; corresponds to the row

i
¢t of matrix A. Now let

ey =(< 1,00 >,< 0,073 >,--+,< 0,0, >),

e2=(<0,00 >,<1,03>,:-,< 0,0, >),

o~ en=(<0101 >s<0$°'1>""7<110n>)~

It is easy to see that {e;,i = 1,---,n} is the basis of space T,.

Applying L to the basis, we have
Le; = {{lo,(0), 1, (0i), -, lon(0i)}}  i=1,--,n.

Let C,, denote Le;,t = 1,---,n. C,, are another set of templates which can be used
to represent the template operator L. We call C,, the image template or output
template for node o;, because it is the image of e; under the mapping L. We may
also interpret it as the distribution of the output for = unit source at node o; under
this mapping. Again, o; is called the center of this image template and I,,(0:) the
center element of the image template.

We can see from the definition that the image template of the node o; corresponds

to the i-th column in the corresponding matrix we mentioned above.
Analogous to the in-web, another graph called the out-web for node o; may be
:.: constructed, in which we include a path from o; to 0; whenever [,(0;) # 0 in an
image template. In this graph all paths start at node o; and indicate which nodes
are directly influenced by the node o;. The pictures in Fig. 4.5 are two out-webs for
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¥

o Nes(@r) Ths(on)

|
> #f L o

10y (04) [Fen(08)  [len(06)

|
O
log(01) log(02) loy(03)

An out-web for node 5 in second template space

“ loy(07) lo,(08)

::: loy(01) loy(02)
- An Out-Web for Node 1 in Fourth Template Space

Figure 4.5: Two out-webs
o0 the node o5 of the second template space and for the node o, in the fourth template
Y space in Figure 4.1, respectively.
) Now the right form of a template operator can be defined as:
L= [< Ci,0 >,< Cz,Oz >y, < Cmon >]r
5:’. or simply
L = [COI’COQ’ e ,Co"]f-

g Then the right product of a template vector and a template operator can be intro-
i duced as follows:

L 7 r=ylL =y[0°u0°11'”*0°nl'
?:'. = {(ys 001 )7'7(% 002)7'" . v(y9 OOn)T}‘

X, It is interesting to compare this operation with the corresponding operation

z = yA in a matrix structure. There, the matrix A keeps the same form while the

T3 2 ‘
15,400, 'all () !413 iy
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vector y needs to be transposed as a row vector. Here, the template vector y keeps
the same form, but the operator needs to be expressed as a right form in order to
obtain an operation consistent with the left form. The rule for deciding when we
should use the right or left form of a template operator is simple: if L appears on
the right of the operand , the right form is used and vice versa. We will see that
with these two kinds of products the multiplication of two t-mplate matrices can
be expressed very simply.
Let

A = [RonRo'n"' 7Ro.‘]l
= [Co“Coz" . ’Co..]n

B = [R:’URIM’.”’RL..]‘
= [C; C;”...’C;"]r

1?

and

D=AB = [R:,',»R':,,"',Rg,,]l
[C:v C::’ Ty C:..]r

It is easy to verify that

D=AB = A[C;I’C;v"'9cé,‘]r
= [AC;I, AC:,,’ Tty AC;.,]'
[RonRoz""vRon]lB
= [ROIB’RQB,...’RONB]I
R”oa =R, B

= R,[C;,, -, CL )

= {(R.,,C; )15+, (R, Co )1}
Cc",, = AC’,

= [Roy,"*+, RoaJiC,

= {(Ro,, Co))1, "+, (R, Co )1}
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4.4. EsTIMATES OF THE DecAY OF INVERSE OPERATORS

(o))
(S]]

Each element in the product of two template operators is a scalar product of a
operating template of A and an image template of B. An operating template of D
is a left product of the operating template of A for the same node and the operator
B. An image template of D is a right product of the operator A and the image
template for the same node. It is easy to see the relationship with the operation of
multiplying a row and a column in the matrix structure.

The transpose of any linear operator L can be simply obtained by swapping the

input template and output template for each node.

LT = [Co”Co:s""Con]’
= [RoURo-n' o sROnl"‘

For a self-adjoint operator, we have R,, = C, ,0; € O.
Corresponding to the concept of diagonal dominance in row or in column for the

matrix structure, a template operator is center domsnant in output or in input if

I Io.-(oo') [> }: IO‘(OJ'), forall o; €0,

o’EO
0, #0i
or
| L, (o) > 3 15,(0i), forall o €O,
o)GO
o, #0i
is true.

Although we have also developed other new concepts for template operators, we
will not present them here, since they are not directly related to the discussion in

the next section. The interested reader can refer to the Appendix B.

4.4 Estimates of the Decay of Inverse Operators

In this section we will concentrate on the discussion of a decay phenomenon for
the inverse of a sparse template operator. As with the matrix structure, if there
are only few non-zero elements in a template operator we call it a spurse template

operator.
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f*
P e stands for first influencing wavefront of the © node
o @ stands for second influencing wavefront of the © node
, O 0 0o o O O o o
;‘» o 0 &® o o o o o
¢
:{ 0O 0 0O & e & O O O 0O o0 o
1?‘ o o & e U e & 0o 0 0o 0O o
e
o 0O o & e O O O O O ©°

P
ot
:l' Figure 4.6: First and second influenced wavefronts
4

To describe the decay phenomenon more precisely, we need to introduce two
¥ 2 important concepts: k** influencing wavefront and k** influenced wavefront of the

: node o; in a template operator. Let
. plate op
o
‘o (0)(0.) = o;
[\~
.\'
: be the center of the influenced wavefront for node o;,
::
A
Wiid(o:) = {o; | L, (o) # 0,0; # oi}
.'
‘o
3 be the set of all nodes except node o; for which the corresponding elements in
‘ '-3 the output template C,, are non-zero. (l)(o.) is called the immediate or first
.'? influenced wavefront of the node o;. The k** influenced wavefront of the node o;
o can be defined recursively:
gty
!
o Deflnition. 2 The k** influenced wavefront of the node o;, Wi:l(o;),is o set of
Ko nodes o; defined as follows:
@
o ; M 1w
; Wallod = U Wailoy) = U Wai(o))
=0

: W(" ‘)(°' g
r'
L Fig. 4.6 shows the first and the second influenced wavefronts of a node o.
W
e
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b
' 7 Likewise, let
0w Wo) = o
b
::; be the center of the influencing wavefront for node o;,
X
‘ WiD(00) = {05 | (o) # 0,0, # 01}
n
oY be the set of all nodes except node o; for which the elements in the input template
R R,, are non-zero. Wf,:)(o,-) is called the first influencing wavefront of node o,.
-sj Deflnition. 3 The k** influencing wavefront of the node o;, W,(:)(o.),is a set of
Y
‘5, nodes o; defined as follows:
o8]
o () (1) T
. wlﬂ (o‘) = U W"l (00;) - U Wlﬂ (Oo‘).
X 0 €Win™"(00) u=0
‘e
\ » . . .
% It is clear from the definition that
7
- Wilo) Y Wik(oi) = 8,
. W (o) WP (0;) = 8
- in o.)ﬂ in (O.) =
..'\ and® ?
e . q .
J 0 = |JWil(e)) = U W(os).
. ": j=0 1=0
2,
" where y # v and the p and q are the largest integers for which the W{)(o;) and
ﬁ W,-(:)(o.-) are not empty. Here p and ¢ both depend on node o;. To simplify the
.-,, notation, we will not explicitly express this dependence. For many important appli-
- cations, Wi,l,l(o.') and W})(0;) are compact in the sense that the first influenced and
.':: influencing wavefronts are located in a small area in the solution space. For P.D.E.
P, o
‘ :;'_ applications, the number of elements in W,(,:)(o,-) or Wf,},l(o.-) is typically bounded
. by a constant which is independent of the mesh size. We often call this property
- the locality of the operator. In terms of the graph representation, we have the
, following results which will be useful later.
-,
' 3Here we assume the operator is irreducible.
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’ »

N Lemma 4.1 The k-th influenced wavefront is the set of nodes to which the shortest
,:_::, path from node o; is of length k.

\_:;:: Similarly, the k-th influencing wavefront is the set of nodes from which the
:J X shortest path to node o; is of length k.

¢ )

) Let V(o;) and U(o;) be the first influencing and influenced wavefront for node o;
\% of the k-th power of template operator L. We have?®:

g Lemma 4.2

| ¢ ()

: U Wi (0i) = V(ai),

4 ,»1"': j=1

_;i-?':

'~ and .

.

U Wal(e) = U(o).

i=1

L

e

o The two kinds of wavefronts characterize how influences are propagated to or
: ~ from other nodes graphically.

- The identical template operator I is as follows:

W

iy

::‘ I=[I°1’I°2""’I0u]l=[I017I°2"”7I°n]'

ey

'1- where

{ L; = {l;(0;) = 6 | 0 € O}.

s

::“ The template vector I, is a structure corresponding to the base vector in a ordinary
'b‘h p [ g

“;j vector space; both have only one element which is 1 and the rest are zeros.

st

. Let

o L7 =R\ RZ - R3

'.t',‘: _ [C-l c... c?
L T Mo 1 ¥oa v 7Ty Hoa Ir

P )

- @2 be the inverse of the operator L where
2

o A U CORTEN mICH) 8
“-; C;t o= {17} (0i), -+, 151 (0i)}
: %Here, we ignore the possibility of cancellation producing new zeros.
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S
R
2y are the input and output templates of the node o; for L~!, respectively. It is easy
s : . . . .
"’.: to see that the input template R of the inverse is a discrete Green’s function for
»':;:: node o;. (R;!, f) is the solution of the equation
D
‘.' . Lz=f
Bl
pl on node o;. Intuitively, if L is a finite approximation of a linear differential operator
3::' and the mesh is fine enough the following is true:
t.a
wa (B, )~ [ G(P.QF(Qdrq
) )
b and
I -
vy 5 (05) ~ G(0i,0)Aq.
{: Let
N
P -1 12 _ -1 2
- ” Rogl ”3 = E (Io.- (oj)) ’
; > 0,€0
. _ 3
. et = X o)™
- 0,€0
B -
IS 2
oY | R;! ||; approximates the norm of the Green'’s function
22
B | 6P, Qydrg
o
. \..’
:'.j if the linear operator is a discretized linear differential equation and the mesh size is
("
o small enough. The norm || R;! || is bounded by a constant which is independent of
:ﬁ the mesh size if this finite approximation is stable. The structures of the continuous
» and discrete operators are more consistent for the template space than for the
‘3 traditional vector space for the matrix structure.
' Let x4 be the characteristic function on the subset A. Construct two new
.9, sequences of template vectors
5 (%)
-1
:E:: Q7 =X ° R
™ = {n®(01),n®(e), -+, n®(om)},
By
g k=1,--,q
28
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i=1,-,N,
Y = Xy © G
= {m(k)(ol)v m(k)(%), e ’m(k)(oN)}’
k= lv' Y )
i=1,-,N,

where p and ¢ are the largest integers for which W,-(,’,’)(o.-) or Wm(o,-) are not empty,
and N is the number of the nodes for this template operator. By the above defini-
tion, we have:

n®(o;) = { o), 0i € Wa(an,

0, elsewhere,

-1y, e Wi
m(k)(oj) ={ Io, (0.), 0, €W (01)9

0, elsewhere.

In another words, P,-(") only gathers the elements of C;! on the k-th influenced

wavefront and Q{¥ gathers the elements of R;! on the k-th influencing wavefront.
Let

QM I, = £ (o))
o, €WiN(03)

I PO, = S (@)
o,&)V( ¢(0i)

We have the following theorem:

Theorem 4.1 If there is an integer k > 2 such that W,-(,f)(o.«) is not empty, then
for any such integer k the following inequality holds:

2 -
Q™ I, < Il B II” (42)

where v < 1 and depends only on the condition number of the operator L. A

corresponding result for the k** influenced wavefront is also true:

2 _
I P®I, <+ et Il (4.3)
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Proof. The proofs of (4.2) and (4.3) are parallel. Here we present the proof for
(4.2). From the definition of an inverse, we have:
LC'=1,
Construct two sequences of template vectors:

RY = 3 PO

=k+1

= {l(k)(ol)s l(k)(o2)s Tty I(k)(oN)}’
w® =LR}

= {RouRozy e 7RON}R£")
= {z(k)(ol)’ z(k)(oﬁ)’ R | z(k)(oN)}’
k=1,---.
By the definition, we have:
( k
0, 0; € U gl‘l‘t)(o‘))
1®(0;) = =l
1 I5}oj), o€ U W (o),
pw=k+41
( k-
0, %edvmm)
2M(0;) =4 (R,,,R™), ojeW, ""( DUWSH(0:),
0, 0 € U (“)(0.)
\ p=k+

It is clear that the non-zero patterns of VV,-(") and W',-("'z) do not overlap. Now,

LR® | = (3 || P s

J=k+1

I L LRY |

L=t w®

I L7t w® - WD)

I L= (Il LR - REZD) |
s || (B — Ry |

cp || PO+ PEV

Al INIA

IA

D00 T T T 0 oo T T AR 1 430 Y LR
. <

" 1‘"'-’
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The rest of the proof can be completed by the following lemma [Dem77]:

% Lemma 4.3 Let {a:}i>0 be a sequence of nonnegative numbers. If there isa K >0
so that Tispa; < Kak-y for allk > 1, then ax < [K/(K + 1)]*so for all k > 1,
) where 39 = Fi500i -

ot If a matrix has only real eigenvalues or is positive definite, a stronger result can

be obtained. Here we present the result for a positive definite template operator.

Theorem 4.2 If L is a positive definite template operator, then

k
i | B 1< 2 (\/‘/Z; L) IR (4.4)

;
40

N

-~
»
-

1o is2 (Y25 heat. (43)

Proof. The proof of (4.4) is rather easier. Apply the optimal Chebychev iteration
AL to the equation

fet LTz =1,

Yy and choose the initial guess (%) = 0, where I, is the output template of the identity
s operator for node o;. We know that the solution of this equation is the input
_.;, template R;' of L~! for node o;. The k-th iteration z{*) has the error bound

B
~ 150 - rt s 2 (YEE) 120 - R

A Since z(® = 0, z¥)(0;) = 0,0; € O — V(o;) and

| R® fi<)| z® - R || -

-2, Using the same argument with
Hel Lz =1,

we can prove (4.5).

e 3% 1% .

., 0) \ '(‘ )
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These two bounds are rather pessimistic, but we can still derive some very useful
results from them. For example, apply the Crank-Nicolson scheme to a parabolic

boundary problem
Ou
-6—t-+Cu = f, z €2 x(0,T),
lu =g, z € g x (0,7,
u(z,0) = u%z),

where
= b, %4
Lu = .'§=:1 a,ia: 3%, + bu,
— 8
Iu =cu + '%,

a; > 0, b,c and d > 0. It is known that the condition number of the resulting linear
system has the bound [Kuz87]

ky < Crh™?

where T is the time step and h is the spatial mesh interval. If we choose 7 >~ h,
then asymptotically, we have

| R flax cem?VH

where d 2 kh is the distance between the node o; and the node in the k-th wavefront.
There is almost no influence to node o; from those nodes which are a few wavefronts
away. Thus, if we apply & to this problem, the overlapping needed is very small.
For a higher-dimensional problem where decay of the norm of the wavefront does
occur, the average size of an element in the k-th wavefront even diminishes faster,
since the number of elements in k-th wavefronts will increase when k increases.

(@-1) where « is the

The number of elements in each wavefront is proportional to k
dimension of the solution space, but the bound on the rate of decrease in (4.2),
(4.3), (4.4) and (4.5) depends only upon the condition number of the operator.
Because the condition number of approximations to the model problem is only
weakly related to the dimensionality of the solution space, the individual elements
of the inverse operator decrease faster in a higher-dimensional grid, explaining the

faster convergence of 4M for higher-dimensional problems.
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Unfortunately, these bounds still cannot guarantee that the norm of the k-th
:: . wavefront of the input or output template of the inverse will decay as k increases.
‘: y In Section 4.2, we presented illustrative counterexamples and explained how bour.ds
:,: such as (4.2) and (4.3) can permit growth. The conditions of sparsity or positive-
. definiteness are not strong enough to ensure that decay will occur. Here we will
’,:l: present a sufficient condition which will yield decay.
::' For simplicity, in the following discussion we rescale the template operator L so
‘2:’ that

. I,(o;)=1, forall o;,€0.

,;; If a template operator is output or input strictly center dominant, then we have
2-5 the following result.

Theorem 4.3 Let L = I — B be a sparse template operator and || B ||, =7 < 1,
'.:.. then

S I P* g < Al PE g (46)
Ky FIBI, =v<1, then
19" e < 71 @Y . (4.7)
0
) Proof. First note that | B|, < 1 or || B, <1 are equivalent to saying that L
) is input or output center dominant, respectively. Another important fact for the
J proof is the following: if
0
::t:. from Lemma 4.1 we have
)
W\ q

* wWie) . U Wal(o).
02 I=k~1
N .
o This means that the input template R, only has non—zero elements in the (k—1)-th
\) or higher influenced wavefronts of the node o;. Similarly, if
0,
< o; € Wi (a:),
¥
s
:' then »
wiko) c U Wika).

I=k~1

S
E:
"y
k
o

1,
Ql.

O L OO0 t' .0' Wit
n..‘c.,it.,_ AN ‘ el .u, 5". 30 .‘z'.. .‘ t\ X X ., gy 0‘ s .‘t b, .ﬁ. 0 ;.o ;‘ 1,‘ ‘q. pJ 'Q‘ \‘l h .‘m (W '9‘ 'l. ,c,t' i,l y.!'n. " a.l (K :. 0 Ly "l.‘,h !

o
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The proof of (4.6) and (4.7) are parallel. Let’s prove (4.6).
Vi we have
LC;:1 = {(Rm ’ C‘;l)T, R (Ro.‘a Co—‘l)T}v
=1,

and

(Roj, G5l = 30 1a(0j)I5}(0k) + 1o, (05)15} (07)

on €W (0;)

= 2 la(0)l7 (o) + I5)(0))
°kEW.(.‘.)(°1)

{o, i # J,

1, i=j.
First, we prove: when k = p, (4.6) is true. Let 0j be the node in Wiﬁ;(o;) such that
5Hos) = || PO |
Then we have

(RO," C;I)T = z IO.(OJ')I:‘.I(O}‘) + Io-il(o.i)

on€WD (o)
=0,
1B =P s T Halon) 15400 |-
on €W (05)
Since W{)(0;) ¢ W& (0:) UWE(0)),
I PP, < > | Loy (05) |) I P2 ||,
on €W (0:)nWil)(o,)
+ 2 | Loy (05) l) I P2V .. (4.8)

€W (o)W (o))

It || P® Il > || PPV loo» We could conclude that 1 < «, a contradiction. Thus we
can replace || PP l, in the right hand side of (4.8) by || P*~Y ||, and obtain

I PP )|, < Al PO,
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"
i Using reverse induction, suppose
S‘ii
4
e k k=
e I PPl S P Ny k=k41,-,p
‘ is true. Let o; be the node in w},,’:l(o;) such that
" -1 (k)
R I50) =1 P |
&N
B Then we have
" (Ropy O = T L0l on) + 153(oy)
" n€W)(o))
B =
v",
- k -
L) 1=1PP NS X o)) 11500 |-
.-: o€ Wf,l.) (05)
i Since
2 () "
: ; Win (o.i) Cc U wout("‘):
L I=k-1
} . we have
&
> (?) (k)
' I Bi% o < > lou(o) 1111 P |l
3 onel (J Wl }nWD(o;)
\. vmhk
;
k=
i + D oo [T BE D . (49)
2 n €Wl (0)nWidio;)
fﬁ As with in (4.8), || PV loo 2 |l pi-Y |l Will lead to a contradiction. We therefore
! have
A & k-
I B# ), <l PEY Y, k=1,-,p.
-@
::. The proof is completed. |
i Notice that || B ||,, < 1 does not ensure the conclusion of (4.7). There is a |
,- mistake in a theorem dealing with a diagonally dominant tridiagonal matrix in a
i .
' recent paper of Rong-Qing Jia. He claims that || B||_ < 1 could yield a sharp
;‘ Ll
\‘e
Y
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estimate for both columns and rows. A simple counter-example is the following

matrix, which is row diagonally dominant but not column diagonally dominant:

[ —56.1 35 ]
21 -35.1 34
21 -541 33 0
21 -53.1 32

21 -351 14
{ 21  -34.1

The inverse of this matrix exponentially decays in its columns but not in its rows.
If we loosen the condition of strictly center dominant to center dominant, then

following are true:
I P )l < 11 BE D), (4.10)

or
1Q* e < 11 Q1. (4.11)

We may also derive a simple bound as follows:

Theorem 4.4 Let L = I — B be a sparse linear operator. If || B|| =7 <1, then

k41
I R 1< —17 —, (4.12)
_.7
IfllBll,=9<1, then
c® —-—7”1 4.13)
) < .
[ B wpod (

Proof: f | B}l < 1, we have L™' = T2, B and C;! = (L3, B’),,. From
lemma 4.2, it follows that

RY=(3 B,

n=k+1

Tu TUpE T RTR e TR TR T T A T Ty W T R e e T e | s e o T e
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Consequently,
* . AR+l
1 P9 = (Y B B
n=k+1 R

The proof of (4.13) is parallel with the proof of (4.12).

For an M-matrix A, there is a diagonal matrix D > 0 such that DA is strictly
diagonally dominant. Applying this result to the corresponding template operator,
the exponential decay law can then be applied to the new operator.

It is also very interesting that for some problems (e.g. the five point discrete
Laplace operator in a rectangle, which we will analyze in detail in the next chapter),
the operator is not center dominant in the physical space, but is center dominant
in the Fourier space.

The concept of the wavefront also allows us to discuss the exponential decay for
some random sparse linear operators without ordering the nodes since there is no
ordering relationship involved in the definitions of the influencing and influenced

wavefronts.

: ¢ [l
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Chapter 5

Model Problem Analysis

The exponential decay law presented in the last chapter has shown that there is a
relationship between the overlap and the convergence of #M. A general quantitative
relation is very hard to derive for arbitrary cases. A common approach is to analyze
prototype model problems. In this chapter we present spectral radius analyses of the
Schwarz splitting (%) for model problems in one- and higher—dimensional solution
spaces. We have found that the convergence speed of $#M is a function of the
overlap, the geometries of the subregions, the frequency of the Fourier component
and the dimension of the solution space.

The relationship between convergence and the area of the overlap has been
observed previously. Miller [Mil65] proved a result for the case of two overlapping
rectangles, while Kantorovich and Krylov mentioned in their convergence proof
that the convergence rate is related to the geometries of the subregions. They were
mainly interested in solving elliptic equations in irregular regions; an analysis for
applications motivated by parallel processing and composite grids has not been

carried out. Our analyses extend the earlier work in the following respects:
e The number of the subregions can be an arbitrary finite number.

e A quantitative relation between the convergence and the shapes of the subre-
gions is shown.

¢ A relation between the convergence and the dimension of the solution space
is explored.

e For two— or higher-dimensional solution spaces, the analyses are carried out in

Fourier space. The convergence speeds for different frequencies are presented.
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70 CHAPTER 5. MODEL PROBLEM ANALYSIS

e An analysis of higher—order finite difference schemes is carried out.

These analyses have provided guidelines for implementing an efficient parallel algo-
rithm for the solution of elliptic PDE’s.

5.1 One—-Dimensicnal Case

There is no practical reason for parzlellizing the solution of a one-dimensional
model problern, but the analysis of this problem provides some results useful for
the higher~dimensional cases. It alsc makes the whole analysis more complete.

The model problem in one dimension which we will consider is
y'(z) = f(z), =z€(0,1),
y(0)=0o; y(1)=2

After discretization using a centered second order method, the resulting linear sys-

tem is
Tz = b, (5.1)

where

T, = Tridiagonal{l, -2, 1}lnxn-

The %M for solving this problem divides the region into k overlapping subregions
Qi =1,.--,k as shown in Figure 5.1. (To simplify the analysis we assume the
overlap pattern is uniform. Similar conclusions can be deduced for more general

cases.)

Let h be the grid size, £ the length of the overlap and 7 the length of every

subregion. Thenlet n+1=3,1= £ and m + 1 = 2. The circular points in Figure

5.1 are the boundaries of the subregions. A natural way to implement %M is to

first guess some “reasonable” initial values on the artificial boundaries and then to

" solve these subproblems separately. Next, use the solutions of these subproblems
:‘_:. to update the values on the artificial boundaries and proceed iteratively until the

solutions on the overlapping regions converge. If we solve on these subregions in a

natural order, each succeeding subregion takes its boundary values from the new
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.
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Figure 5.1: One—dimensional overlapping grid.

solution on the previous subregion. As we have shown in Chapter 3, this procedure

is equivalent to applying the block Gauss-Seidel method to the Schwarz enhanced
equation (95E):

Tz

i
a
—~
[$1]
o

En Tn Fn
E, Tn ]
=(Tm®Ik+Em®Lk+Fm®Uk)f =5.

The corresponding block Gauss-Seidel iteration for this equation is as follows:
(Em ® L + T @ I)F**Y = —(F,, @ Up)E® + 5. (5.3)
The quantities above are defined as:

e E,: an m x m matrix with zero elements everywhere except for 1 in position
(l.m—=1+41).
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::;' F . . . . . .
he o F,: an m X m matrix with zero elements everywhere except 1 in position
N (m, ).

‘ ‘I
A .':, o Ii: a k x k identity matrix.

:u.)

‘il . .
s o Li: a k x k matrix with zero elements everywhere except for 1’s on the sub-
\ diagonal.

* o Ui a k x k matrix with zero elements everywhere except for 1’s on the su-
'-’ perdiagonal.
- As we showed in Chapter 3, (5.1) and (5.2) are equivalent. Therefore, the
ij convergence analysis of M is reduced to calculating the eigenvalues of the block
',i.: Jacobi matrix J = M~!N of the & where

"

' M =T.® Ika

:-::: N =Em®Lk+Fm®Uk-

i _

.j;:; If we multiply out M~!N then
- J =(Ta® L) (En® Ly + Fn ® Us)

- = (T3) @ Ii)(En ® Li + Fn ® U)

e = (T En) ® L + (T Frn) @ Ui

U | - -

_) =Em®Lk+Fm®Uk7

&

;' L where E,, and F,, have almost all zero elements except columns (m — i + 1) and {, !
'F . respectively. The rank of this matrix is clearly at most 2(k — 1). After some row I
- and column exchanges J can be transformed to J, which is similar to J:

A - On-2tyx(n-28) Cia-

_'); 7=vJUT = (n—2k)x (n—2k) (n—~2k)x 2k ’

) 02k x (n—2k) G2kxak

:l‘: where

o G=D'QL+EQ®L+FQU,

“

o a 0 0 b 0 0

‘\-"‘. El —_ , DI - , Fl - ,

P [0 o] [b 0] [0 a]

gy S
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R
&
) .= l _m+1-1
= T (m+1) T o (m+1)
"E: It is clear that A; € (0 U Ag), where A; and Ag are the eigenvalues of matrices J
!::0. and G, respectively. Using matrix polynomial theory we may obtain the following
" theorem.
‘yf.: Theorem 5.1 If a < b then Ag satisfies the following equation:
2
A /\é+2*a*c030*/\c+a2—bz=0
.] where the parameter @ is the root of the followsng equation:
o b\? sin ((k - 1)8)
N 0 - 29 —_— .
N cos @ + \J (a) —sin ) Y (5.4)
ﬂ' ]
S
S
:.:ﬁ The proof of this theorem is lengthy and has nothing to do with the discussion of
"*J _ M. We present it in an appendix.
‘ot Let
A%
‘\,:; p =maz{| Ag |} = maz{| As |},
i
,‘é it is easy to show that p corresponds to the smallest root 6* of equation (5.4). In
J particular, if k =2
't - =b
‘.'&" p=9o
99 and if k=3
o = vb.
A p=h
i,
‘..;;.‘ Now we can immediately observe some important facts about M :
e
fj 1. First, the spectral radius of J only depends on the number of subregions k
‘“ and the overlapping area a. If both k and a are independent of the mesh size
7 h, then the convergence of #M is also independent of k. Figure 5.2 shows the
F-b.
A distribution of the roots 8 when k = 4,5,6,7, with a = 0.4 and b = 0.6 for all
" 5 four values of k. As k increases, the curve for the left hand side of equation

-t

(5.4) remains the same, while the frequency of the jumps in the curve for

T
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s

; the right hand side increases. We can see that the smallest root of equation
N (5.4) moves leftward when k is increased. This implies that p increases if k is

e increased. From these pictures we can also see that matrix G has 2k distinct

a real eigenvalues when a < b.

N 2. For the cases of k = 2 and 3, we notice that when the overlapping area
i-', increases, p decreases, and when k increases, p increases. These conclusions
.-,. also are valid for the general case (k > 2). We cannot give a closed form

solution for k greater than 5, but the numerical results indicate that these
A results hold. Figure 5.3 ! shows the theoretical and computational values of
;,."* p. The computational results (denoted by ®, A etc..) are very well matched
L with the theoretical values. This picture also indicates that the conclusions

we mentioned are general.

3. Furthermore, the 34 of the matrix T, has Property A™ [You71], thus the
e Gauss-Seidel iteration can certainly be improved by the SOR acceleration.
; Since p is known, the optimal relaxation parameter can be estimated exactly
o (see Chapter 6 for detailed discussion).

Increasing x = I/m corresponds tc increasing overlap.
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Figure 5.2: The distributions of the roots for different k.
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0.7 -

0.6

044 = THIORY
¢ SUBRBGIONS
4 SUBRBGIONS

3 SUBREGIONS

0.3 -

o
SQUARED JACOBI SPECTRAL RADIUS

0.2 -

4 00O »

)
‘ol 0.1 - 3 SUBREGIONS

) L L Ll L

‘,'."‘ ] 0.2 a.4
\ OVERLAP PARAMBTER (//m)ms1 -

b % Figure 5.3: Theoretical and computational values of the squared spectral radius for
Vv the block Jacobi iteration matrix in the 1-D case.
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3.2. Two- AND HIGHER-DIMENSIONAL CASES

5.2 Two— and Higher-Dimensional Cases

Two—dimensional model problems are commonly used to test numerical methods
for the solution of elliptic PDE’s. Here we use a method which combines Fourier
analysis with the method used in the last section to analyze the application of
$M to the two-dimensional model problem. The same approach can be applied in
higher-dimensional cases.

The Poisson equation in two—dimensions is:

2 2
?a;g_+%—y££- = f(z,y), (z,y) € (0,1) x (0,1), (5.3)
Ul =g(z,y). (5.6)

Using central differences we obtain a discretization of this equation:
Az = b, (5.7)
where
A=Tn®In +'In®Tn-

This is of the same form as we obtained in the one~-dimensional case, with h being
the mesh size and n + 1 = ;. If we cover (0,1) on the z axis with k subregions
as in the one—dimensional case, then the solution area is covered by k overlapping

rectangles as shown below 2.

If we apply UM to these overlapping subregions, then it is equivalent to applying
the Gauss-Seidel method to the following S&E:

[ w,, F
E. W. F,

AZ = z (5.8)
E, Wn F,

! En Wn | 0
= {(Wan QL+ (In®En)® L+ (I. @ Fn) @ Ui}z = b,

2The subregions are shifted upwards to improve visibility of the overlapping pattern.
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Qe

\ Q4

. 2

1

Wy Figure 5.4: Two—dimensional overlapping grid.

where
;.. Wm=Tn®Im+In®Tm, E:"=I'|®Em, F:"=In®Fm.

K In order to analyze the convergence of #M , we need to study the spectral radius
of the block Jacobi iterative matrix of the -

o J= M-IN
10 where

i M=W,®Q I, N=(I,®En)®@Li+ (I ® Fr) ® Us.
We have the following result:

Theorem 5.2 The matriz J is similar to the mairiz

D= O(n2—2nk)x(n2-2nk) C(n3-2nk)x2nk

O2nkx (n3=2nk) Gankxank

) where

G = Block — diagonal{D;}, i=1,---,n,
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5.2. Two- AND HIGHER-DIMENSIONAL CASES

D;=D.®IL:+E.® Ly + F ® Uy,

E = a; 0 . D= 0 G L F= 0 o0 ,
00 Oa,'

Bi 0

o = sinh km#; 8 = sinh (1 — x)mé;
T sinhm&.- ’ T sinh m0.- ’
cosh8; = 2 — cos i t=1,---,n,

n+1

and k = l/m is the overlap ratio. Let p; be the spectral radius of the D;, then each

pi is the convergence factor for the corresponding Fourier component of the error
in the approzimation.

Proof. Let
U=(Xn®lm)®lk

where X, is an orthogonal matrix whose columns are the eigenvectors of the matrix
T., and U is an orthogonal matrix. Note that UNUT = N. Then

J' =UJUT =UMNUT
= (UMUT)"IN
= {(XaTuXT® In) + I, ® T) ' ® i}N
={(Pn®@In+ I, @Tn) ' ® L}N

where D, is a diagonal matrix whose diagonal elements are the eigenvalues of T,.

We know that there is a mn x mn permutation matrix P such that
P(A®B)PT=BQ®A
where A and B are any n x n and m x m matrices, respectively. So we have
P(I,Q En)PT =En®I,, PU,QF,)PT=F.Q®I,,

P(Dn®lm+In®Tm)PT= m®Dn+Tm®In-
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Notice that:

Q =1.®Du+Tn®l,

= Block-diagonal{T:}nxn,
T: = Tridiagonal{l,¥i,1}mxm
¥ = —4+ 2cos( .

i .
n+1)’ t=1,---,n.
Let P = P ® I,. Then we have
J'" =PJPT = P{(Dp®In+1,0Tn)"'® ,}PTPNPT
= {(P(Dn® Im + In ® Tm)PT) ' @ LiH(Em ® In) ® Lk + (Fm ® I) ® Ui}
= (Q7' @ Li){(Em ® In) ® Li + (Fm ® 1) ® Uk}
= [Q_I(Em ® In)] ® Lk + [Q—I(Fm ® £n)] ® Uk.
As in the one—dimensional analysis, we can move all of the non-zero columns to
the last columns and the theorem follows.

Since the structures of these diagonal blocks are the same as those analyzed in
the one-dimensional case, we can find a tight estimate of p;, the spectral radius of
J, by using theorem 5.1. But here it is clear that

ai+ﬂl'<1’ a|'>07 ﬂt>0 i=1"":n

and thus we cannot derive a closed form of p; for general k, but we may use the
Gershgorin theorem to get a very good bound for p;.

Corollary 4

ps < ay+ fh.

If we denote u = 2, it is easy to estimate the asymptotic bound for p; (as h — 0):
n

Corollary 5 If k=2,
sinh((1 — &)un)
7= " sinh(ur)

Ifk > 2,
< sinh(xum) + sinh((1 = &)ur)
Py = sinh(p7) '
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> 2 SUBREGIONS
pu=10

2 SUBREGIONS

LOG10(S8QUARED JACOB! SPECTRAL RADIUS)
1
[ ]
'S
i

¥ v

° 0.8 0.4
OVERLAP PARAMETER (¢

Fiigure 5.5: Theoretical and computational values of the squared spectral radius for
the block Jacobi iteration matrix in the 2-D case.

Figure 5.5 3 shows that the estimate derived from the Gershgorin theorem is quite
accurate. The computational results (denoted by ©, A etc..) are very close to the
theoretical curve. Note that the curves are the asymptotic bounds of p;.

From this theorem and its corollaries the following conclusions can be deduced:

o The convergence rate of $M is a function of the overlap ratio . If « is
constant?, then the convergence rate of 3M is independent of the mesh size.
This is where the conclusion about optimal complexity comes from. If an
optimal algorithm is used for solutions of these subregions, the total compu-
tational work required for achieving a fixed accuracy is proportional to the
number of discrete unknowns.

3Increasing £ corresponds to increasing overlap. Note that the domain sise increases with increas-
ing overlap when the subregion sise is held fixed.

*This means that x is independent of the mesh size. We also assume here that the number of
subregions is independent of A.
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Wy k=035 x =025 « =0.03
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3 | |
-- 1 1 1
i Figure 5.6: Three two—dimensional overlapping grids.
>
~
: e The convergence rate of #M is also a function of the shape of the subregions,
4
“' specifically, a function of u. If the subregions are thin in the overlapping
wn direction (usually caused by increasing the number of subregions), then the
N convergence rate is slow. This suggests that we should avoid slicing the do-
a
e main into many thin overlapping subdomains. A multidirection decomposition
Ag‘q" strategy is proposed in the next chapter.
A
I\ ¢
. e As in the one—-dimensional case, the P of the matrix A has property A(™).
s. Therefore, some classical acceleration schemes can be applied.
e
ny
2 e The convergence factor decreases monotonically when the frequency increases.
"2 Furthermore, if the overlap is increased, the errors of high frequencies are
".;Q damped exponentially faster than for the smaller overlap. The picture above
"z
e shows three different overlapping grids. The corresponding table presents how
e the convergence factor p; is changing when the the overlap and frequency are
. \ changed. The last column lists the number of iterations needed to reduce
. the errors of the corresponding Fourier components by a factor of 10°. An
¥,
?= important message which can be obtained from this table is that we should
K. combine the strategies of increasing overlap and using multi-level grids. In
'S the following chapter we will discuss the accelerating strategies in detail.
b3
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5.2. Two- AND HIGHER-DIMENSIONAL CASES {3
Frequency || « Matrix D; Number of
? a; | B; | pi iterations
0.5 || 0.3704 0.3794 0.5366 18
1 0.25 || 0.1987 0.6754 0.7684 44
0.03 || 0.0256 0.0602 0.9729 420
0.5 |[ 0.0095 0.0095 0.0135 3
6 0.25 [ 0.0037 0.1555 0.1574 7
0.03 ]| 0.8058+10-% | 0.8302 _ 0.8306 62
0.5 || 0.0002 0.0002 0.0003 2
11 0.25 || 0.3841+10-% | 0.0338 0.0338 )\
| 0.03 || 0.9612+10~° | 0.7126 0.7126 34
[ 0.5 || 0.5067+«10~> [ 0.5067+10-° | 0.7166+10~° 1
16 0.25 || 0.4423+10-"7 | 0.0076 0.0076 3
0.03 || 0.1039+10-% | 0.6141 0.6141 24
0.5 ]0.1409«10~7 | 0.1409+10~" | 0.1987+10-° 1
21 0.25 || 0.5987+10-7 | 0.0018 0.0018 2
0.03 |[0.1215+10~7 | 0.5320 —10.5320 19

Table 5.1: Convergence factors for three two—dimensional overlapping grids.

The model problem in a uniform p—-dimensional cube is as follows:

&

i=1
U |r= g.
\‘j As in the two-dimensional case, the cube is divided into k overlapping subcubes.
" o . . . . .
- Figure 5.7 shows a 3-dimensional cube and its decomposition. The subcubes are
o shifted upwards to improve the visibility of the pattern of overlap.
:‘ The same approach is used for this problem as for the former case. Before
']
,',::-_ discussing the analysis, some notation needs to be defined. Let
.}'
‘
- V= T,
s 4h} .
@2 = tridiagonal {1, -2, 1} ..
::: and I")(n) be the n x n identity matrix. If there is no confusion, we will use I‘!)
M
.':; instead of IY)(n). We can recursively define the matrix® derived from the model
[ >,
_‘p.i. 5As in the two—dimensional case, a central difference scheme is used here.
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Figure 5.7: Three-dimensional overlapping grid.

problem in a p—dimensional cube as follows:

T® = 71 @ 1V 4 [P-1) @ TV, p=2--,
where
I® = -1 g 1V,
Let
xM =X,
and
X0 = xr-D g X(l), p=2,--.

Then X is the orthogonal matrix which diagonalizes the matrix TP). That is :
X x )T = p»

where D) = Diagonal {—2p+ L cosg;7/(n + 1)} 4p-1 4 ps-1)- Thus, the discretiza-

¥ tion of the p~dimensional model problem can be written as:

T,s’);l' = b
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5.2. Two- AND HIGHER-DIMENSIONAL CASES 85

The corresponding 3 and its Jacobi iterative matrix of the & are as follows:
TPE= (WP @ IP-(k) + (I*~1(n) ® En) ® Lt + (I*"V(n) ® F,n) ® Ui} 2
- 3
JP = M-IN

= (WP g I(P—l)(k))-l((I(P-l)(n) QEn)® L + (I(P")(n) ® Fn) ® Us),

where
WP = -1 g IV(m) + I(P-l)(n) TV,

A result which is very similar to that obtained in the two—dimensional case can be

obtained as follows:

Theorem 5.3 The matriz J?) is similar to the matriz
H- O(ne=(2nk)p=1)x (n# = (2nk)2=1) Cl(np—(2nk)P-1)x (2nk)P=1
O(2nk)p=1 x(n? - (2ank)»-1) G (2nk)p-1 x (2nk)p-1
where
G = Block — —diagonal{D,},
D, =D, +E,® L+ F. ® U,

QVO,DL=Oﬂ",F:=OO
0 0 8, 0 0 a,

E =

o _ sinhxm, 8 _ sinh(1 - x)mé,
“" sinhmé, "’ v sinhmé, '
ILr
6, = - d ,
cosh 2p Zcos(n+l)
v=_(i1, ,1p), i,y =1, ,n,

The spectral radius of each D, is the convergence factor ‘or the corresponding

Fourier component of the error in the approzimation.

Proof. The proof is completely parallel with the two—dimensional case. We only
need to change the Fourier transform matrix from XV to X(-1),

There is also a corresponding result for the asymptotic bound:

TP A A L T A

3 7/
. “".’i,o ,»",A B A W g K X3 X X )
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; Figure 5.8: Three three-dimensional overlapping grids.

; Theorem 5.4 For the p-dimensional model problem the asymptotic bound for the
! spectral radius of the block Jacobs iterative matriz of the § is:
. smh(\/ — 1rur) + sinh(vp =T(1 = x)ur)
sinh(/p — Imr)

3
)
: The following picture and table present examples similar to those presented
) for the two—dimensional case. The same conclusions can also be found in higher-
E: dimensional cases. If we compare this table with Table 5.1, an interesting observa-
N tion is that the convergence rate of the higher-dimensional case is faster. Actually,
' we can derive this conclusion directly from Theorem 5.4. A more favorable result
4 is that the errors in the higher frequency components damp even faster than in
9 the two—dimensional case. Thus the strategy of a multi-level grid will be more
successful.
i
i; 5.3 Higher—Order Approximation Cases
)
" In this section we will discuss the convergence behavior of %M for higher-order ‘
2

approximations to separable elliptic PDE’s.
:‘ |
‘

0 Pty O R W W 4
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5.3. HIGEER-ORDER APPROXIMATION CASES 87
RS —
Frequency K Matrix D; ; Number of
,,‘ | i=7 a;, [ﬁ Bi ;5 | Pi.s iterations
oY [ 0.5 [ 0.2998 0.2998 0.4239 14
v 1 0.25 |{ 0.1622 0.6164 0.6923 32
o . 0.03 [ 0.0218 0.9518 0.9627 | 302
- 0.5 || 0.0014 0.0014 0.0020 2
L% 6 0.25 || 0.3748+10-°_| 0.0722 0.0724 5
) 0.03 || 0.9105%10-% | 0.7689 0.7690 aq
2 0.5 ]| 0.6625+10-° | 0.6625+¢10-> [ 0.9360+10- 1
e 11 0.25 ]| 0.6101x10—° | 0.0085 0.0085 3
" 0.03 |[ 0.1445«10~% | 0.6207 0.6207 25
;. 0.5 ] 0.3820«10—" | 0.3820+10~" | 0.5402+10~ 1
J 16 0.25 || 0.1255+10~% | 0.0011 0.0011 2
:::; 0.03 |[ 0.2383+10-° | 0.5050 0.5050 17
r; 0.5 ]| 0.2869+10-9 | 0.2869%10~° | 0.4058+10~° 1
w 21 0.25 {| 0.3543+10" 1" | 0.1524x107° [ 0.1524%10~° | 2
R 0.03 ] 0.5055+10""" | 0.4153 0.4153 14
"
N Table 5.2: Convergence factors for three three-dimensional overlapping grids.
v,
e The two—dimensional separable elliptic problem on the rectangle [0, 1] x [0, 1]
: may be stated as follows:
Hes
N a a i) i) _
;“ U Ir= g(z7 y)'
i where
Yoy
.:' n(z),pa(y) 2> 0
,,'l.‘ Here the unknown U(z,y) will be approximated by tensor-product B-splines. When
Wy the Rayleigh-Ritz—Galerkin discretization using this approximation is applied to the
o
- above equation, it gives rise to a matrix equation
- Az =),
-
’\
) where the matrix A is of the form
i A=M.®5,+S:9M,.
o
A"
o

R ORTRTR
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If the B-splines are of order k, then the matrices M,, M,, S:, S, are 2k — 1 banded

Y
'

3:.: matrices arising naturally in one—dimensional problems. Moreover, M., M, are
1N symmetric positive definite and S;, S, are symmetric semidefinite. We will not
Y discuss the derivation of this system here. Interested readers can refer to the paper
. (KW84).

| Let the decomposition of the solution region be the same as in the two—dimensional
.::: case. After a slightly more complicated derivation, we may obtain the S5 of the
:::& matrix A as follows:

28 [ Wi Fa -

'8y E. W, Fa

! A=

,, 7 0

'1 ‘-f:: En Wia F,

E- | En Wi |
- ' where

.: Wi=M:®S5,+5:®M,,

:.: E;=Li;®S,+ Ly ®M,,

3‘ F,=Uu®S,+U;®M,.

;i:' Here the matrices M; and S; are the B—spline matrices from the subregion ;, while
:,: the matrices L;; and U,; are matrices with zero elements everywhere except for
:‘i: a lower or upper triangular matrix at the position (1,m — ! — d) or (m,{) which
’ is related to the boundary conditions on these artificial boundaries. Because the
;: detailed definitions of these matrices depend on the particular approximation, we
%i i will not discuss them here. An example will be presented later.

- In contrast with the case in the last section, we cannot use a Fourier transfor-
®: mation to diagonalize both matrices S, and M, here. Fortunately, a generalized
:. eigensystem will do. Since M, is symmetric and positive definite and S, is symmet-
X : ric, there exists a matrix Z such that
e 2™,Z = I,,

_E;

%
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5.3. HIGEER-ORDER APPROXIMATION CASES <9

275,Z = D,,

where [, is the identity matrix and D, is the diagonal matrix. The diagonal elements
of D, are the generalized eigenvalues A of

Syz = AM,z.

Now a similar approach can be applied to analyze the spectral radius of e
Jacobi iterative matrix of the &. The matrix Z ® I, can be used to diagonalize the
matrices M, and S, in A such that:

(ZTRIOWWI(Z R In) =M ®Dy+S:iQ I,
(ZTQIE(Z81In) =Lii® Da+Ly® I,
(ZTQL)F(Z281In) =UnQ®Dy+UsuQ .

Let P be the permutation matrix such that P(A ® B)PT = B ® A, then

P(Al. @D, +35:® I,.)PT = Block — diagonaI{B;},
P(Ly; ® Dy + L3 @ I,)PT = Block — diagonai{L,},
P(Uyi ® Dn + Uz ® I,)PT = Block - diagonal{l;},

where {B;}mxm is a 2d — 1 banded matrix, {L:}mxm i3 a matrix with zero elements
everywhere except a d x d lower triangular submatrix in the position (1,m = - d).
{Us:}mxm is a matrix with zero elements everywhere except a d x d upper triangular
submatrix in the position (m,!). Now, following the same approach as in the proot

of Theorem 3.2, we can prove the following theorem:
Theorem 5.5 The Jacobs iterative matriz of the & is simslar to the matriz
D= O(n1-2ndb)x(n3~2ndk) C(n3—-2ndk)x2ndk
O2ndix (n3 —2ndk) G andk x 2ndk
where
G = Block — diagonal{D;}, :i=1,---,n.
D; =D:®Ib+E:3Lb+F:3Uh

. g A
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EZ:{R‘ 0], D;:{O Q'}, p;:{o O]v
0 0 Q 0 0 R,

R‘ = S{Bi-lcn

Qi =TB:~'U;,
{
5{ = [ 0,"',0,Ib‘0a"'y0 ]bxmy

Ti=(0,,0,10,0,--,0 [Fus

Let p; be the spectral radius of the D;; then each p; is the convergence factor of the

error component of the corresponding generalized esgenvalue.

Here we cannot present a general quantitative estimate for p;, but a similar
qualitative result such as the results in the last few sections is also true in this
case. When we increase the overlap, I, will move leftward or upwards in S; or 7/
(I = ¢/R). By the exponential decay law in the last chapter, the norm of R, and Q.
will exponentially decay. If the overlap ratio x is independent of the mesh size A
then these norms are also independent of A, as can be seen in the following example.

Strictly speaking, the nine-point stencil is not derived from the tensor product
B-spline. Since the matrix derived from the nine-point stencil has the simplest
tensor product form and also has higher—-order accuracy, we present it as an example.
discussing the convergence behavior when M is applied to this problem.

The matrix equation derived from the nine-point stencil on a unit square is as
follows:

(M, ®S5, +S;:® M,)z =),

where

R

. = I'ridiagonal{l, -2, 1},
= Tridiagonal{l, 4, 1},

r
dny

.
»n X
I

= Tridiagonal{6, -12, 6}.

N
"y
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\ Frequency Matrix D; Number of
K- : f iterations
0.5 ]]0.3794 . 0.5366
b 1 0.25 ] 0.1987 0.6754 0.7684 44
! 0.03 |1 0.0256 0.9602 0.9729 420
0.5 |[ 0.0094 0.0094 0.0135 3
X 6 0.25 [ 0.0036 0.1547 0.1565 7
X 0.03 || 0.7939=10-7 | 0.8298 0.8298 62
N 0.5 || 0.1928+10-7 | 0.1928+10~7 | 0.2726=10~ 2
11 0.25 || 0.3481+10-° | 0.0327 0.0327 4
u 0.03 ] 0.8709=10~° | 0.7103 0.7123 34
N 0.5 [[ 0.3950+10~° [ 0.3950+10~° [ 0.5585+10~° | 1
b 16 0.25 || 0.3280=10-7 | 0.0069 0.0069 3
- 0.037] 0.7641=10~" | 0.6086 0.6086 24
{ 0.5 || 0.8092%10~" | 0.8092+10~7 | 0.1144=10"- 1
o 21 0.25 | 0.3088«10"" | 0.0015 0.0015 2
3 0.03 || 0.6097+10-7 | 0.5240 0.5240 18
A Table 5.3: Convergence factors for three two-dimensional overlapping grids using

nine-point stencil.

Since S, is an identity matrix, the generalized eigenvectors are the same as the

b, Fourier components. Applying the above theorem to this matrix equation we have
R = sinh xm#; Q= sinh (1 — x)mé;
b " sinhmé; ' ‘" sinhmé; '’
s
' .
3 5 — 2cos 2=
' cosha.-:———:‘:'—‘, t=1,---,n.
fy 2+cos oy
\ It is not very difficult to see that the higher-order approximation has the same
o asymptotic bound for p; as in the Corollary 2 of the last section. The above table
: lists the convergence factors for different frequencies and the number of iterations.
; The decompositions are the same as in Figure 5.6. Compare this table with Table
> 5.1. The iteration counts are exactly the same except the last one. But for the
» higher frequency errors the convergence factors are slightly better. We can also
. prove this conclusion by comparing the R, Q; with a; and 4.
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Chapter 6

Acceleration of the Convergence and Numerical

Experiments

The discussion of the last chapter has provided insight into the behavior of %M.
Particularly, some possibilities for further improvement in the performance of this
method have been mentioned. In this chapter, detailed discussions of the accel-
eration strategies are presented. Section 1 discusses the SOR (Successive Over
Relaxation) acceleration. For the model problem, the classical theory of SOR can
be applied here directly. Both theoretical and experimental results show that the
improvement is significant. In order for a parallel algorithm to be efficient, global
communications should be avoided as much as possible. Here a local relaxation
scheme is discussed, and a general convergence proof for this acceleration is shown
providing a theoretical basis for the scheme. Section 2 discusses the application
of other classical acceleration schemes. Since we have obtained the eigenstructure
of the iterative matrix of the plain #4M, many acceleration schemes for M can
be analyzed. Particularly, optimal Chebychev acceleration is studied here. There
are other powerful accelerations schemes, such as preconditioned conjugate gradient
methods which are not mentioned here. This is not a oversight. They are very good
iterative methods for a conventional computer, but they require a global informa-
tion exchange in every iteration and introduce a lot of communication overhead,
and the paralle] efficiency degenerates. If a new technology, which can reduce the
high cost of the global information exchange, appears in the future, these CG types
of accelerations will certainly be very interesting for further study. In Section 3,
hierarchical computation is discussed. Combining it with the other accelerations
makes #M a competitive parallel iterative method for real applications. The re-

maining sections discuss several other issues which are important in the use of M
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o'.‘;
g
for real applications, namely decomposition considerations, solution methods for the
i subregions and convergence checking. Due to lack of much real experience on the
7
P new parallel computers and the rapid advances in hardware and software, further
) studies are needed for these topics.
N '7 . . .
R, 6.1 SOR Acceleration and Multi-Color Splitting
AN
' Among the many possible acceleration methods, the SOR acceleration is an attrac-
tive choice. It is easy to implement and its theoretical background is well under-
L stood. The local communication pattern of this method is also an appealing feature
&: For parallel computation.
)
e As we discussed in the last chapter, %M is actually the following block Gauss—
» Seidel iteration !:
S (Em ® L + T ® L)z = —(F,, @ Uy)3® + 5. (6.1)
K
= Thus, an obvious choice for an acceleration scheme is the SOR acceleration. We
K can construct a new approximation z(*+1),
-
.
t gk4+1) = D) 4 (1 - )2,
¢
N
and then attempt to choose an optimal relaxation parameter w to speed up the
/ convergence. Since the connections between the subregions merely involve artificial
", boundary values, the relaxations are carried out only for those boundaries. Late
l' in this section we will present a general convergence result: for any choice of the
" relaxation parameter between 0 and 2, this scheme will converge to the true solution.
D But as we know, SOR cannot be successfully applied to an arbitrary matrix. The
"' following famous example is due to Kahan [Kah38§] :
i1
o 1 —-a O
SY
:': K = 0 1 —a ]
A »
e —-a 0 1
"9
W

IHere we exhibit the case of a one—dimensional model problem.
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CHAPTER 6. ACCELERATION OF THE CONVERGENCE

where 0 < a < 1. This matrix is an M-matrix and is positive definite. A short

,;: calculation will show that the optimal relaxation factor is w = 1, which is equivalent
t: to saying that SOR acceleration does not help in this case. Some further restrictions

on the iterative matrix are needed. For instance, the well known property A and
the consistent ordering of the iterative matrix will guarantee a successful relaxation
iteration. Fortunately, we are able to construct an algorithm which satisfies these
restrictions on the iteration matrix of the multi—color 3M.

Let us start with some simpler cases. Since we have found the eigenstructure
of the iterative matrix for the model problem, the analysis of the application of
SOR to the model problem is straightforward. As we see from equation (5.2), this
SPM has property A(™ 2. It is easy to verify that natural ordering and red-black
ordering of the subregions will both lead to a consistent ordering in the matrix.
Therefore, the classical analysis of the SOR theory can be applied here directly!
We have calculated the spectral radius p of the Jacobi iterative matrices for the
model problems in any dimension, the optimal relaxation factor can be calculated

from the following formula:

2
R WY
Table 6.1 lists some comparisons between plain #M and its SOR acceleration for the
one—dimensional model problem. The third column of this table lists the number of
iterations needed to reduce the error by a factor of 10° for plain %M, while the f-urth
column lists the same quantities for SOR acceleration with the optimal relaxation
factor. The last two columns are the experimental and theoretical optimal relaxation
factors for the same cases. We can see that they agree very well. There is a detailed
discussion and the results of many experiments are presented in the paper [OST86],
which we will not repeat here. As we see in this table, the improvement of the SOR
acceleration is significant. For the higher—dimensional problems, we could also make
a similar table using the spectral radius we obtained in the last chapter. The next
several sections will discuss interesting issues which appear when this method is

applied to more general cases.

3Property A(™) is an extension of Young’s famous property A to the block matrix case. Since we
consider only block matrices in this chapter, we will later omit the adjective block.
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[ SOR Acceleration Results fori—D Model_ Problem }
Number of || Overlap | Plain #Y | Optimal w | Optimal w
subregions ratio $M | + SOR | observed from theory

0.333 14 711.2 1.15

0.182 27 10113 1.27

2 0.095 52 14 | 1.42 1.40
0.039 129 221 1.60 1.57
__|oome [ 258 30 [ 1.68 1.67
S 0427 | 19 1013 1.21
0.309 26 10113 1.28

3 0.250 37 121 1.38 1.33
0.175 66 16 | 1.48 1.44

0.071 141 21 [ 1.62 1.58

| 0.030 | 349 35171 1.71

T 0.333 44 12 ]1.42 1.36

4 0.220 70 16 | 1.5 1.46
0.167 97 18 | 1.52 1.51

0.083 204 26 | 1.67 1.63

0.333 88 17 [ 1.55 1.50

S 0.190 169 26 1.62 1.61
0.167 193 26 [ 1.65 1.64

0.083 397 36| 1.75 1.74

6.1.1 Multi-Color SAM and Consistent Ordering

As we mentioned above, some restrictions are needed to ensure the success of the
relaxation iteration. A well known candidate class of matrices is those which have

property A("), or more generally, block p—cyclic matrices. An n x n matrix A is

p-cyclic if there is an permutation matrix P such that PAPT is of the following
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But simply having the property A(™ or being a p—cyclic matrix is not enough.
)
: ~$: Consistent ordering is also needed. A detailed discussion of these concepts is given in
N E: Varga’s book [Var62]. For the model problem which is decomposed in strip fashion,
::,. these requirements are automatically satisfied. The block-tridiagonal structure of
o~ the iterative matrix in (4.2) has property A() and is consistently ordered. But,
' ’.,'_; the inherent dependence in the natural ordering of the equation (5.2) prevents an
_..4: efficient parallel implementation. Instead, red-black ordering is commonly applied.
". For a general solution region, the decomposition has to be carefully implemented
0 in order to meet these requirements. The multi-color #M proposed in Chapter 2 is
' ~ a way to obtain a block p—cyclic matrix. If we impose an extra restriction on the
s3s decomposition such that:
%)
000
J .
o v =Jaf =@, I=1,--,k,

=

where k is the number of colors, and #; is the number of subregions in color I,

i then the blocks which correspond to a particular color only need to be connected
,‘r = to the previous color in the solution order. It is not difficult to see that the M
‘ '.: for this splitting is a consistently ordered p—cyclic matrix. When p = 2, the p-
':t: cyclic matrix is a block 2—cyclic matrix, which is usually called a red-black ordered
O block matrix. The advantage of the multi—color splitting is the parallelism inherent
¢ 5 in this decomposition. Subregions which have the same color can be computed
" independently. In previous chapters we also mentioned the strategy of locating the
Z :f.' artificial boundaries near the middle of other subregions in order to maximize the
,'-'. reduction of the error on these boundaries. If we group the subregions into only
&
8 :i
"

> )
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two colors, this requirement is very hard to achieve. This is the major reason we

are motivated to propose the multi—color splitting.

6.1.2 The Sensitivity of the Relaxation Factor to the Overlap

The analysis of the relationship between the spectral radius p and the overrelaxation
factor w shows that when p is close to 1 the rate of convergence is much more
sensitive to changes in the relaxation factor. A slight perturbation of the relaxation
factor can result in a big degradation in performance. This is not good for practical
implementations. Since the spectral radius is exponentially related to the overlap,
the sensitivity of the rate of convergence drops dramatically if the overlap increases
(see Figure 6.1). Although the increased overlap causes more work in each iteration,
the total work is still less than it is for a small overlap. The work per iteration
increases linearly with the overlap, while the spectral radius decreases exponentially.
In Figure 6.1 the relation between the number of iterations and the relaxation factor
is shown. These results are all for the two—dimensional model problem in a unit
square. We divide the square into 5 overlapping subregions. The six curves in this
figure correspond to six overlap patterns, which have different overlapping ratios.
As we see in this figure, for the smallest overlap the performance of the method is
tremendously sensitive to the choice of the relaxation factor.

This figure strongiy suggests a need to increase the overlap. Now a natural
question to raise is how to choose the best overlap ratio for a given number of
processors. Let us study the two—dimensional model problem again. We divide the
unit square successively into 2, 3, 4, 6, 8, 10 overlapping subregions. Then for each
case we vary the overlap ratio from 0 to 0.5. Using the spectral analysis in the last
chapter, we can calculate the total work needed to reduce the error by a factor of
10%. Figure 6.2 shows the relation between the overlap and the total work for these
six cases. From this figure we can see that although the spectral radius will be
minimum for an overlap ratio of 0.5, in terms of the total work the optimal overlap
ratio is somewhat less than 0.5. When x decreases, the spectral radius increases.
But, if the change of overlap is small the number of iterations needed for reducing

the norm of the error by a fixed factor does not change. Thus, the total work will
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Figure 6.1: The number of iterations as a function of the overrelaxation factor w

decrease until the number of iterations jumps. That is the reason why these curves

show saw-tooth shapes. As the number of the processors increases, however, the
optimal overlap ratio will approach 0.5.

6.1.3 A Local Relaxation Strategy

SOR acceleration has a very efficient parallel implementation, but unfortunately, the
estimate of the relaxation factor still requires global information exchange in gen-
eral. This is a well known problem which causes the parallel efficiency to degrade.
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: Recently, a new technique® which uses local relaxation factors has received some
v y attention. The motivation for this technique was to try to find a more efficient re-
::; laxation technique for irregular meshes or variable coefficient problems which could
-/ avoid estimating of the spectral radius of the Jacobi matrix and obtain more error
;‘f) reduction than the uniform relaxation factor. The reasoning behind this technique
:' N is very convincing. Since the relaxation is a local operation, the relaxation factor
o should also be characterized well by local features. Experience has shown that this
s idea works well for many test problems. Of late, the locality of the communication

in this method has obtained the attention of the parallel computation community.

5 C. Kuo, B. Lever and B. Musicus [KLM86] apply this idea to a mesh—connected
3 actay.

Ny The basic idea of the local relaxation method is to determine a relaxation factor
o for each individual grid point. Consider a five-point difference equation

¢

;’ _‘ GeZy + AnTa + BeZo + GuZy + GoZ, = b,

kL where z, is a grid function located at the position (i, ;) 4, z,, z,., z,, and z,, are
.';: the grid functions located to the south, north, east and west of z,, respectively, and
::’, Go, G,, Gn, Ge, Gy are the corresponding coefficients. Suppose that there are N
2 and M grid points in the row i and column j in which z, is located. Now we may
B imagine that there is an N x M rectangular grid and that each grid point has the

L%

v same difference equation as z,. Then the spectral radius of the Jacobi matrix for
a

z this problem is
o

PJ=—[\ﬂl._-COG_+\/G—¢_COS

>, N+1 M+1
»
ol Therefore, the optimal relaxation factor for this imaginary rectangular grid is:

1 Wopt = ——T==?
e We will use this w,, as the local relaxation factor for grid point z,. We can obtain
',:." different relaxation factors for each grid point which are only related to the local
*i

v 31t 18 also called the ad-hoc SOR method. See [Erh81), (Erh84]

“The solution region need not be rectangular.

you
E¢
P
a:.'
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features surrounding the point in this way. When the solution region is rectangular
o and the coefficients of the PDE are constant, the local relaxation factor is the
My same as the global optimal relaxation factor. Experimental results show that this

relaxation scheme is successful for many test problems.

The same idea can also be applied to the SOR acceleration for %M. The calcu-

‘{' lation of the spectral radius for the model problem can be easily generalized to a
::' general second order elliptic PDE with constant coefficients. As we have seen in the
'.:,: last chapter, the estimate of the spectral radius only involves the overlap ratio and
i information about the shape of the subregions, both of which are local information.
:.. If we want to estimate a local relaxation factor for an artificial boundary, which
&N is located in some other subregion, we may imagine two overlapping rectangular
::' subregions and let the shapes of these rectangular regions be as close to the real
e ones as possible. Then we may use the estimate of the relaxation factor for the
:.,"' rectangular regions as the relaxation factor. Thus, global information exchange can
. .';:s: be avoided. In the next subsection we will prove that, for any choice of w between
o 0 and 2 for each subregion, the iteration will converge.

e This local relaxation method has been successful experimentally. Theoretical
ﬁ analysis of the relationship between these relaxation factors and the convergence
_, rate remains a very interesting open problem.

J

; { 6.1.4 The Convergence Proof for Local Relaxation

. ~ In Chapter 2 a multi—color #M for elliptic PDE’s was introduced and an extension to
1 a positive definite matrix, called multi—color &, was mentioned. Here the detailed
bl definition of this splitting is presented. Combining it with the local relaxation
:l method, we may prove the following theorem:

‘o

:: ] Theorem 6.1 When the multi-color UM is applied to a positive definite matriz, if
@, every wﬁ"), which is used as the relazation factor for block j of color i, satisfies

P

._: 0< w}i) < 2,

.i- then the relazation process of the multi-color & converges.
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Proof. The basic idea of this proof was given three decades ago by Ostrowski [Ost56],
who used the same idea to prove convergence of the group relaxations. The new
aspect here is that we combine two old techniques, #M and group relaxation, to
obtain an efficient parallel implementation.

Let
Az =b (6.2)

be the linear system of equations, where A is a positive definite matrix. The multi-
color & with local relaxation can be described as follows: First we find p permu-
tation matrices P, [ = 1,---, p such that matrix A can be permuted to p different
partitioned matrices, where p is the number of colors:

-

Af) 4y Avh,
(1) 401) (1)
A= P, Az.l A2.2 Az.h, er =P1A(1)P1T
1 1 1
| Ail).l Ag@x)ﬁ (kl)’kl
Af) AP APl
A&';’% A% A7)
= B, . e | PT =PRAYP].
. A(P)l A(P) Ag).k, J

Local SOR relaxation is then applied to each of the blocks A(‘) as follows:

ADXHD = of9 |- 3 AXED - T A0 140 41 - ) AQX
J<i >

The motivation for this algorithm came from the fact that the original block relax-
ation (or group relaxation) still suffered from slow convergence. After we studied
the inverse structure of the sparse matrices in Chapter 3, we noticed that the er-
ror decay rates for different variables in the same block differed greatly. The plain
block relaxation failed to take advantage of the exponential decay of the inverse of
a sparse matrix. The multi—color & tries to put every variable within the fast decay

area of some color (geometrically, we may say “near the middle of some subregion”).

LR LY ] (MY,
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As we show in the model problem cases, it eventually yields a method which has
optimal complexity.

o a

The proof of convergence is straightforward. It is well known that for each
positive definite operator there is a functional

S
-

:: F(X) = (AX, X) — 2(b, X)

5 which corresponds to the system of equations, such that the vector which achieves
4

" the minimum of this functional is the solution of this system. The iteration process
. can be viewed as the process of minimizing this functional.

M

B Let us consider each calculation of a block as one step of the algorithm. It is
_, easy to verify that the decrease in the value of the functional for two consecutive
¥ iterations is as follows:

. -1
? FX*) = F(XM) = w02 = w0, 407 r)

Y where r*) is the residual of block i in color I. If every w! satisfies 0 < w() < 2, the
- sequence of F (X,-m) monotonically decreases. Using arguments of Ostrowski, we
J can prove that this sequence will converge to the solution of (6.2). This concludes
~ our proof of convergence.

"

6.2 Other Classical Acceleration Schemes

#

A

o Applying & to equation (3.12) we have

>,

G = WO 4 f,

Fe+1) é.f(") + ﬂ:lf,

3 where G, = A?:‘ﬁ,. This is a typical form of the basic steration. Many acceleration
N

h: schemes for this iteratinn are available. There is an excellent survey and comparison
$ for them in L. Hageman and D. Young’s book, Applied Iterative Methods. We
7 will not repeat their comparison here. As we mentioned in the beginning of this
D
’. chapter, some of these methods are not discussed here due to the high cost of
D)

the communication overhead in a parallel computer environment. Among these
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t':'|
,{;.
different schemes, the popular Chebychev acceleration is rather interesting in this
;:::: case. The adaptive Chebychev procedure still suffers from the high cost of the heavy
N . . . . . .
.‘;::: global information exchange in each iteration, but if we have some knowledge of the
E::’;_ eigenvalues of the iterative matrix G,, then optimal Chebychev acceleration is very
) attractive. Particularly, for the model problem a detailed analysis of the eigenvalues
;‘.;.:" for the & is available. The application of the optimal Chebychev acceleration to
U
y :: the model problem is therefore straightforward. Let
o
' m(A) = minly,,
;" M(A) = maxA,.
B
- From Chapter 4, we have
.y m(G,) = -M(G,)
s
Vol
‘g and
P - nh( nh 1 _
o M(@E.) < sinh(xur) + sinh(( rc)pr). (6.3)
sinh(u~)
W
.::": The test results in the last chapter show that the bound (6.3) is very accurate®.
vg'tl ~
, Moreover, all eigenvalues of the matrix G, are real provided that the overlap ratio
:5.: x < 0.5%. Applying the estimate (6.3) to the classical formula for the convergence
? rate for optimal Chebychev acceleration, we can expect this acceleration to yield an
(W
:.'.., improvement similar to that offered by the SOR acceleration. Unfortunately, this
Ly
s result cannot be generalized to the other cases as the SOR acceleration can. First
LD M
*‘ of all, there is no local Chebychev acceleration available, and the classical adaptive
o Chebychev procedure requires an extensive global information exchange. Secondly,
:{:. the eigenvalues of the iterative matrix G, can be complex in general. Chebychev
::'. acceleration can only be applied to some of the complex eigenvalue cases. How to
o . BRI .
: apply the Chebychev acceleration to a general problem is still an interesting open
f: problem in some sense.
\
"'\-
'r:-" $If the result in Theorem 4.1 is used, the exact value of M(a’.) can be estimate by some numerical
f:: computations.

®There is no advantage in making x > 0.5. We need not consider this case.

b
~ ; 1%d
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6.3 Hierarchical Computation

During the last ten years, very important advances in computational science have
been made in the area of the hierarchical computation. Among the best known
techniques are multigrid techniques(Bra77], adaptive grid methods{Oli84], hierar-
chical information flow[Oli86]. Although, their approaches, theoretical foundations
and applications are very different, one idea behind these techniques is the same.
According to the particular application, the computational process is decomposed
into several different phases, regions or grids, which we will abstract as a hierar-
chy. Instead of using one uniform approach for the whole problem, we treat each
component of the hierarchy separately, attempting to choose the most efficient way
of obtaining the result in that component. The components of the hierarchy will
communicate with each other, and after some assembling or iterations, the final
result can be obtained in a very efficient way. To use a business expression, we
might say that we are only willing to pay what we have to pay. This same philoso-
phy can even be applied to the design of the computer hardware and programming
languages. If the designs of the computer and language are “smart” enough, it is
certainly worthwhile to run an algorithm in such a way that in the different stages

of the computation different precision of arithmetic are used. There is no point

in using double precision when the iteration has just started. The same idea can
certainly be adapted to the acceleration of #M. In Chapters 2 and 4 we have stud-

ied the convergence rates of $#M for different frequencies for both continuous and

el %

el

>,
-

discrete cases. An important observation from the analyses is that the slow conver-

4@

gence is caused by the low frequency errors. Table 4.1, which lists the number of the

iterations required for reducing the error corresponding to particular frequencies by
a factor of 10°%, strongly suggests that we should start the computation at the coarse
grid. After the low frequency errors converge to the truncation error level at this
grid, we should then refine the grid and continue the computation. This procedure
can be recursively repeated until the results of the desired accuracy are obtained.
We have used the model problem to test this idea. Our results show that the cost
i3 substantially reduced.
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- ( L The Numbers of Iterations in Each Grid_L;l_—_—

ke F«'umber of || Grid Levels (5 is the Finest Grid) 1 The Equivalent Numbers of |
subregions |[ 1 | 2 ] 3[4]5] Total “ Iterations on the Finest Level

; — s DpLnnnnr 7 [ 15—

’ U 1 E P E ) A R R S

Table 6.1: Hierarchical computations

The test problem is the two-dimensional model problem on a unit square. The
finest grid is (320 x 320]. There are 5 grid levels. The mesh size of each level is

¢ double that of the previous one. The iteration starts at the coarsest grid. After the
iteration converges to the level of truncated error at this particular grid size, we
o refine the grid and continue the iteration on the next finer grid, and so on. Table
e 6.1 lists the number of iterations carried out on each grid level for two different
* decompositions. The last column lists the total work, measured as the equivalent
;‘ X number of iterations on the finest grid. Although the total number of %M iterations
h remains the same as it would have been for a single fine grid, The total work needed
u is reduced to a small fraction of what it would have been.

‘:

d

; 6.4 Decomposition Considerations

s

In the early 1950’s, Kantorovich and Krylov had noticed that the way the solution
4 region was decomposed would affect the rate of convergence. In our analyses of
; the model problems we have seen that the rate of convergence is a function of the
. 3 overlap, the shape of the subregions, the frequency of the errors and the dimension of
X the solution regions. The first important issue in the consideration of decomposition
is the overlap. For the model problem, the overlap can be characterized by a
L simple quantity x (overlap ratio). But, in a general application, x can no longer
ﬁ be used for this purpose. In Chapter 5, the exponential decay law was seen to
:’ be the reason for the success of M. From this law, we recognize that the rates of 1
- convergence for different variables (or grid points) in #M iteration are very different.
g
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o~
- The errors on the artificial boundaries will affect the error in each point by the
RS influence wavefront of the out-web in the inverse operator. Ideally, we would like
" ..‘ . . . .
_‘- arrange the subregions in such a way that all the artificial boundaries are located
:\ in the “heart” of another subregion or subregions’, in order to maximize the decay
) of the error in each iteration. For the model problem, this can be easily achieved
35 by setting the overlap ratio x to 0.5. In general, we need the multi-color splitting
- to achieve this goal.
o Another related issue is the shape of the subregions. For the model problem,
*
the ratio m/n is a very important influence on the convergence rate, where m and n
‘-'.ﬁ are the height and width of the subregion, respectively. If we would like to partition
:,-‘-“ the solution region into many subregions, we should not dissect the region in only
. one direction(such as in the strip case). A one—direction dissection would result in
S
having many thin, long subregions, leaving the artificial boundaries very close to
,'Ef: the boundaries of those thin subregions. This principle is also applicable to general
oo cases. The subregions should have comparable dimensions in every coordinate.
4' .:n . . . 3 . . .
= Any small width in one coordinate will result in a short influence wavefront in the
p . inverse of the operator on the thin subregion, causing slow convergence as we saw in
:::: Chapter 3. A good way of decomposing the solution region is to dissect the soluticn
;:: region in k directions, where k is the dimension of the solution region. Figure 6.3
' shows a dissection in two directions for a two-dimensional problem. A comparison
> is carried out for two kinds of dissection. The first case decomposes the square into
e 32 thin strips. The second one is to decompose the square into 36 rectangles. The
: ;. first one needs 40 iterations while the latter only needs 15 iterations. Even though
:, the latter case has almost twice as many variables in comparison to the former case,
X the overall work in the two direction dissection is only three fourths of the other
L.
'~‘}' one.
4
b y Another interesting issue in the decomposition of the solution region is the au-
o ¥ tomation of the dissection. In principal, this problem is similar to the grid genera-
NS tion problem for the finite element method. There is no intrinsic difficulty in this
;::‘ "The motivation is to put all the artificial boundaries in the quickly converging zone. Then, by
-f"{ the maximum principle, after one iteration the total error will be bounded by the error on these
by boundaries.
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4 Figure 6.3: A dissection in two directions
K problem.
g The last issue is the mapping of the decomposition to a parallel computer ar-
. chitecture. Since the efficient communication pattern of the target computer will
'f strongly affect the choice of the decomposition, it is a very hardware dependent
:: issue. We did not include such mappings in this study, but if we would like to make
! $M a really competitive method, they should be carefully treated.
»
:j 6.5 Solution Methods for the Subregions
d
N The choice of methods for the solution of the problem on the subregions is also an
important issue for applications of #M. Because of the inherent modularity in the
y $M algorithm, each subregion can be solved using a different method. Depending
; on the particular application, we may take advantage of this flexibility. For example,
x we can use a fast solver or even an analytic method, to compute the solution on
i a regular subregion. Direct and iterative methods each have their own advantages
o and disadvantages. Iterative methods are generally preferred. This is because, at
1,. any step, the result from the last iteration is a very good initial guess for the next
& iteration. But this does not mean that iterative methods always win. We have
p
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it
W'\

compared the multigrid method with the fast solver for the model problem. In facr.
: the fast solver wins in the timing comparison. Comparison of the two programs
will show that this result should not be a surprise. The multigrid method has more
,"‘; overhead than the fast solver has. The advantage in complexity for the multigrid
. . method only becomes dominant in a very large problem. For sparse problems. if
g_-:\ there is enough memory for storing the LU decomposition in each processor. a sparse
"‘ solver can also be very competitive. The complexity of the work in each iteration
.~‘ is only O(N) in this case, where NV is the number of unknowns.

. A strategy of incomplete solution in solving on the subregions has been tried.
*C‘, The basic idea of this strategy is that we really do not need a very accurate so-
:::' lution on the subregions in the early iterations. If an iterative method is used for
e the solution on the subregions, we can ask if we can stop the iteration at some

point before the solution converges? The preliminary results are disappointing. For
example, we have applied the multigrid method to solve the subproblems. If the

.:'_‘_ number of V-cycles or W-cycles for solving the subproblems is reduced, the rate
o«

of convergence of #M immediately degenerates. The total work needed to converge

- is also increased. G. Rodrigue has also had a similar experience. Further study is
': needed on this question. It seems likely that a way can be found to successfully use

,.‘_::i incomplete solutions.
J
E."" 6.6 Convergence Checking
. " Until communication cost became an important factor for the performance of a par-
. allel algorithm, convergence checking was never an efficiency issue in implementing

:?:_: an iterative algorithm. Due to the requirement of global information exchange

: and control, the convergence check in an iterative algorithm has to be carefully i
{:: implemented. The granularity of $#M is very desirable in this aspect since coarse {‘
.,_" granularity results in a low frequency of convergence checking.

.r In addition, the hierarchical computation in $M can also be used to reduce the

: cost of a global convergence checking. It is clear that we do not need a global check of

' convergence until the finest grid is reached. During the computation on the coarser
2
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o

3

grids, we need only check the local error for each subregion (or processor). Each

o subregion will keep checking two things: the local error and the maximum update
-

N of the variable in the subregion. If the local error is good enough for a particular
. subregion, the corresponding process can be put to sleep ®. If the maximum update
is large, then any of the neighbor processes which are sleeping should be awakened,
P since the boundary values of these neighbors have changed significantly. All these

) information exchanges of convergence information are local and can be combined
" with the exchange of boundary values. There are no extra communication requests
. required for the exchange. Thus, the cost of global checking will only be required on
.: the finest grid. As our experience shows that only one or two iterations are needed
,. on this grid, the overall cost of communication is greatly reduced. In general, the
M global error checking is still a very interesting research problem for any iterative
> method in a parallel computer environment. Some hardware design considerations
. can be very helpful in resolving the efficiency problem. For example, if the control

\ processor can check a built-in flag in each processor at a very low cost, then the
' cost of the checking can be substantially reduced.

o

-~

>

.

A

e

2.

>
{)

\.‘

' *In a time sharing system the processor on which the sleeping process was running can be recycled
- by the system
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Chapter 7

Conclusion

This thesis has reexamined and generalized an old mathematical technique —
Schwarz alternating method ($%M). Through the convergence analysis for the model
problem, the governing factors for the convergence of UM are explored. Using this
knowledge, the performance of $#M can be significantly improved. As a concrete

example of the improvement in performance, let’s apply #M to the model problem

At AU U
‘;‘: 5_z;+3_y; =f(zsy)? (a:,y)G(O,l) X(O’l)a
% Ulr =g(z,y)

where the five-point stencil is used and the mesh size is 1/320. In Table 7.1 we
summarize the results from five different ways of applying %M to this problem. For
each implementation, we list the number of iterations and the total relative work
g needed in reducing the norm of the error by a factor of 103, as well as the con-
vergence factor. In the first approach, the unit square is divided into 5 strips and
each strip overlaps with its neighbors only by one mesh width. The Jacobi type
of %M with natural ordering is applied. As we might expect, the convergence is
very slow. The second approach is to increase the overlap to the optimum, namely,
each strip now overlaps with its neighbor by half of its width. The same Jacobi
25 iteration is used. The exponential relationship between the convergence factor and
o the overlap makes a big improvement in the performance. Next, Gauss-Seidel 3M
is applied. The convergence speed is doubled. Then SOR acceleration is incorpo-
il rated. We list a result for which the optimal w is used. Again the performance is
improved further. Finally, a multilevel grid technique, with five grid levels, is com-
bined with SOR acceleration. The combination of these four modifications yields a

significant improvement in performance. As we show in Chapter 6, multi-direction
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e
- decomposition can lead to further improvement.
.
X _'": [teration Convergence | Number of | Total relative

w technique ‘ factor iterations work
S $M with minimal overlap T 0.99308 1658 1658 |

§ AM with optimal overlap 1 0.90097 110 183.33
; o Gauss-Seidel #M ' 0.8117 55 91.67

" SOR + XM (with optimal ») 0.395 13 21

N Multi-level grid + SOR + ¥ | 0.395 13 2.1

W

Table 7.1: A comparison of 5 different implementations of SAM

-‘ We have incorporated several acceleration strategies in this example. An im-
ho- portant factor for practical application is that these accelerations do not interfere
X 3 with each other. The various freedoms in ¥M which we mentioned in the intro-
"' duction allow us to combine many other techniques to improve the performance
0y

1 - when we apply #M to a particular problem. Particularly, generalizations of #M
::3:' , Schwarz splittings (%), are introduced in this thesis. Thus, we can apply this

powerful technique to many important applications other than elliptic PDE’s.

" There is an increasing demand for parallel algorithms, the inherent parallelism,
; 5: the local communication pattern and the hiding of global information exchange
. ’l

o make #M an attractive candidate for large scale computations on a parallel com-
‘ puter with non-shared memory. A generalization of #M— multi—color M — is
-u:_: presented. It preserves the parallelism of the original %M, while provides a fast con-
&_3 vergence. Many parallel implementation issues such as: local relaxation strategy:

f convergence checking; carrying the exchange of boundary values at coarser grid level

e even after the computation has proceeded to finer grid level are discussed in this
o

.j: thesis. We also propose some open problems which should be further investigated.
{f::E In Chapter 4 we discussed the problems caused by the matrix structure. The ab-
‘ stract form of a matrix creates difficulties for observing many important features of
Y a linear operator. A new structure template operator, which is more consistent with

the form of the original continuous operator than the matrix is, has been developed.

3 Using this new structure, we have presented the concepts of influencing and influ-

enced wavefronts which provide tools for quantitatively describing the exponential

. T o
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decay phenomenon. Several estimates for the exponential decay are shown :n i~
study providing a theoretical basis for determining when  can be used succes<fi;l
Although ¥M is an very old mathematical technique. the understanding »f i+

approach is s:ill young. Particularly. computational experience 1s very himited ()ur

study has presented a promising but preliminary investigation. Interesting opet

problems remain to be solved. We have seen increasing interest 1n this topic am oty

numerical analysts, and expect & to become a competitive and popular iterar.ve

technique.
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Appendix A

The Eigenvalues of the matrix W,

Let )
A A

A0 A A

| A A

a 0 0 b 00
= ., A= , A= ,

and b.a > 0. We will discuss the calculation of the eigenvalues and eigenvectors for
this matrix in this appendix.

where

Before we calculate the eigenvalues of this matrix, the following result is useful

for later discussion.

Lemma A.1 Ifb > a then
d+b2' ’\W-‘ 12 b_a’
where \w_ 19 any eigenvalue of matriz W,.

Procf. The left half of the inequality can be derived directly from Gershgorin's

theorem. Let
r=(z21 . 290)7

he the corresponding eigenvector of A\w, and

zy = max{| z |} >0.
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. For k =2 or k = 2n — 1, we have

ng = ’\W..zl’

;,‘g'.. or

e bzzn-1 = Aw, 22n.
g

g

Q':g SO,

)

:':“. I AWn IZ b > b - a.

ey For 2 < k < (2n — 1), we have!

azk-3 + bz = Aw, z-1.

Then,

E A Zkal 2k-2
o Wp—— —@—— =
K “n Zk Zk

s Finally, we have
\ k‘Vn ‘->— b—a.

v The eigenvalue and eigenvector problem for W, is equivalent to the boundary
2 3 value problem of the matrix difference equation:

")!" { A()Zk + (Al - pI)Zk+l + AZZk-i-? = 07 k= 1,---,n,

(A.2)
Zo=2,41=0

e where p is an eigenvalue of W,. It can be solved easily by the nonmonic matrix
@ polynomial theory. Here we will use the same notation in Gohberg’s book [GLR82)].
::. ¢ It is interesting that the spectral theory of the general matrix polynomials L(A) is,
surprisingly, of very recent origin.

Y If k=1 or k = 2n we have

v bzz = Aw, 21,
or

;::. bzan—1 = Aw,_ z2n.

-----
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116 APPENDIX A. THE EIGENVALUES OF THE MATRIX W,

The nonmonic matrix polynomial?
L(A) = A2\? + (A1 — pI)A + Ao

corresponds to the matrix difference equation (A.2). The solution of (A.2) can be
expressed in terms of a decomposable pair of L()A). Let (Xr, Jr) and (X, J ) be

a finite and an infinite Jordan pair respectively. The decomposable pair of matrix
polynomials L(}) is

([XFs Xoo)s JF ® Joo).

From Theorem 8.3 in [GLR82] we know that the general solution of the homogeneous
finite difference equation (A.2) is given by

Z, = XrJEg, k=0,1,---. (A.3)
A short calculation shows that
det(L(A)) = =A(apr? — (a® + p* = b*)\ + ap).

Then the eigenvalues of the L(\) are

do =0,

L\ LA B+ (b0 - p)(a+b) - p?)
1 = 2ap s
L R - (b—a) - (@ +8) = )
? 7 2ap '

We know that A, Az # 0. The eigenvectors of L()) corresponding to the eigenvalues
A; and L(A;) are

0 a 0
el

2A matrix polynomial

k
L(A) =Y AN

i=0

is said to be monic if A¢x = I, otherwise it is called nonmonic. Here A; are m x m matrices.




Q
o« ]
o ,
z
Y
oY
, 1 1 [a—pA bAy |
i I, = \—a = , L(/\l) = [22a}! ; 1
/ vl wi | M ah oo
1 ] [ [ @~ pA by
; I = { Ar—a = J y L(A')) - 2 ) 2
t LL—“: J L w2 L b/\2 a); - p/\g ]
3
i: where
& wl_pz\l—-a dz_g/}g—a
) - ) -
b Since the Jordan chains which correspond to these eigenvalues all have oniy one
o eigenvector each, the finite Jordan pair is as follows:
", r h
A xp <011
.0 e 1 wp Wy J
; [0 0 0]
. JF =0 A O
N
) [0 0 Ag ]
Now we may use the general solution and the boundary value to determine the
:' eigenvalues and eigenvectors of matrix W,. Note
D
5 0 a a
4,. .AOXF = '
R 0 00
b 0 M(wib=p) Ay(wib—
o (Ay — pD)XeJp = 1{wy p) Az(wq p)
N 0 A(d=pwr) Ay(b— puws)
:. _ 0 —-a —a
( 0 —/\120‘4.)1 —/\220‘02 '
7
“
0 0 0
A XrlJp = .
3 2 2
i 0 /\1 QL /\1 217,
4
¢ and
.
:; Thus, the general solution (A.3) does satisfy the matrix difference equation (A.2).
N: Now let’s determine the constant vector ¢ = (go,g;,92)7 to satisfy the boundary
&
2
4
D
¢
"
;‘ rMTT : o 48
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+ Wt

Ny

X

conditions. For the first boundary condition

"
‘O

;‘x Xrg =0,

T

iy

W we have

- 91 = —q2
7
L)

>, and

\'. go = a(A = Aq)
e ° A
‘b, .

From the second boundary condition

43 ,
w XpJe™tg =0,
'
1P
-‘2 A1 and A; have to satisfy the following condition:

e A1A 1

t‘, 1142 -1 (.‘\4)
R WA = WAt

>y

N
"

The first equality is satisfied from the definition. If b > a, then A and A; are
complex. the second implies the following condition:

[~ asinnf = psin(n + 1)8, (A.3)
R

gt where

W0

o /\‘ =¢ . (.'\6)
‘}’

'_'_’,', Theorem A.1 The eigenvalues of the matriz W, satisfy the following equations:
: Aw.? +2acosfrw, +a® — b =0. (A.T)
ot The corresponding esgenvectors are

R Xe(O) Tr(8),(Jr(8), -+, (Jr(8))" |7 9(6),

where @ is the root of the following equation:

a

(o 5\ ;) _ _sin(né)
; cos0+\J(-) - sin‘#@ —m)e—)-. (A.8)

- K

3 b

H
3 L

- - - ~
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Proof. Equation (A.7) can be directly derived from the definition of \,. Then we

»,
k- may solve Aw, in (A.7) and substitute it into (A.3). After rearranging the terms of
7 sin((n +1)8) -~ d a, (A.8) follows.
h Corollary 8 If a < b, matriz W, has 2n distinguish real eigenvalues. When n 1s
-_: increased, p 18 also increased®.
:: Let
R
p=ma'x{, Awﬂ I}‘
::: A short calculation shows that if n = 1
g p=b, (A.9)

and if n =2

i p=/ba +b). (A.10)

Equations (A.9) and (A.10) are true for any a and b.

- g s
LS

- -

3Here a and b are fixed.

)" ‘l‘..' '..n .,‘*"

. AT n s e ‘ So . gt Tte
Sowe 1 v (]
Y ottt @i " 50 ‘ J !

hot ol nl

W W




LA AP 4

»
%

M

e &:’;’.&"ﬁ'& C

"-"i'."":l W ASSMNY

"
‘.

-

Appendix B

Extensions of the Template Operator

Here we present a few extensions of the template operator introduced in Chapter
4. First, the template operator L over 7!, where s > 1, is discussed. Then a more
generalized operator -block template operator— is considered. In the last section,

other kinds of operations on the template vectors using template operators are
presented.

B.1 Template Operator over 7!

In Chapter 4, the simplest case of the template operator, L on template space 7,

is examined. A more general case, the template operator on 7', where s > 1, is
considered here.

Given a template vector space 7., s > 1, the template operator space over this
space is defined as follows: let

Tn =<011025"'son >

be the template of T}, M, be the space of all s x s matrices. Construct n Cartesian
products

N.-=M.><o.-,i=1,~--,n.

Let

M:‘ =‘V1 x lvg X+ X IV,,.
Each element U € M2 consists of n ordered pairs
U={< M,o0n > < Myop >, < M, 00 >),
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. where M, ,i =1,.--,n are s x s matrices. After defining the operations of addition
'. and scalar product on these elements, it is easy to see that the space M2 is a linear
A space. We call it a template matrix space. Each element m € M? is called a
5

::: template matrix. Now construct n Cartesian products
) , .

.:3' Qi=M, xo0;,t=1,---,n.

.,»-:.

‘E:_'_ Let

,.! £'=Q1XQQX“‘XQ,‘.

W Each element L € £’ consists of n ordered pairs
Yy

NN

. L=[<Ri,0 > < R30>,--,< Ro,0, 3]s,

N
o .
or simply

A 8 L=[R°va°2""’R0u]1'

K- : ,

oy As in the case when s = 1, a template operator space L’ over 7 with the

-

",. operations of addition and scalar product can be defined.

! v, Let

2,

. R={(< Ry,00 >, < R3,00 >, -,< Rn,0, >)) E M,

le. )
o,

'\."“ and
_) 1'=-’{<.1'1,01>,<Ig,02>,"',<1'",0">}EI".
DY,

; ;} Define the product of R and z as
4]

e
; ‘;‘ Rz = z R, z,,

‘ 0, €0
7 where R, z,, is the product of an s X s matrix R,, and a vector z,,. Here the result
-7 .
A Rz is an s—dimensional vector. Now we can define the operation of a template
~e
Cal
;i, operator L € L* on a template vector z € 7'. Let
@
:{‘: L=[R017R0)’”'3R0u]l-
B
; .:;. We define
't y=LI={Roll',Ro,l‘,"',Ro"I}-
2
e
o
2a
' *
O
RN
L) '.
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122 APPENDIX B. EXTENSIONS OF THE TEMPLATE OPERATOR

From this definition, we know that y = Lz € 7! and L maps T} to 7. We may
also introduce the concepts of operating template matrix, image template matrix,
right form of the operator and so on. Since they are so similar to the case of s = 1,

we may leave them to the reader.

B.2 Group Template Operator

In many cases, we need to group the nodes in a template into a few sets, each
including several nodes. The number of the nodes can be very different. Schwarz
splitting is a good example of an application of this idea. An alternative view is that
each node in a template is associated with a state vector which may have different
dimensions in different nodes. Here the group template operator is introduced from

the second point of view.

Given a template T,, and n vector spaces V;, i = 1,.--,n, where the dimension

of V; is k;, construct n Cartesian products

Si=Vixoi=1,.--- n.

The group template vector space G, is the set
Gn=S1 xSy %+ % Sn
with two operations —addition and scalar product. Each element
z=(< 1,00 >,< 23,020 >,-++,< Tp,0pn >)

or
= {xonzm""azon}

in G, is called a group template vector. Let M;; denote the space of all k; x k,

matrices. A group template matrix space Q, is the set

Q.’ = {M.’_l X 01} X {M,"g X 07} X eo0 X {M.',n X 0,,}

4 G Ty
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B.3. A TEMPLATE OPERATOR Maps T iv100 T v

[

with two operations -addition ani scaar product Fach element R & Q, s =
ordered pairs

R:: V< ,\1;,4)1 R ,\»I‘r by s < _‘v{,‘,u,‘ )J:)

where ), is a k, x k, matrix. Detine the product of a group template matrix R and

a group template vector z as follows:

I
o
;’H Rr = Z M.z,
J"j 2,€0
) The product is a vector of dimension k,.
‘ ‘(2 Then the group template operator space [, is the set
" L, ={Q1 x o} x{Qax03} x - x{Qnxo0n}
g
N with two operations —addition and scalar product. Each element L € £, is n
ordered pairs
L= [< R],O] >, < R2a02 >, ,< Rvnon >]lv
; or simply
':: L=[R0“R°”...’Ron]l
V-,
- where R,, is a group template matrix in Q;. The definition of operating a group
template operator L on a group template vector z is the following:
o, i
::'-: y=L2={Ro,I,Ro,$,"',RO"$} |
2
: ‘:3’ where R, ,z, the product of the group template matrix R, and z, is a vector of
dimension k;. The group template operator is a parallel concept of the partitioned
o matrix in the matrix structure. As in the last section, we leave many cf the defini-
: i tions to the reader.

B.3 A Template Operator Maps 7, into 7,

So far the template operators we have discussed are mappings for which the domain

and range are the same space. Here a more generalized template operator which
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(L
i maps one template space 7! into another 7! is presented. In order to simplify the
:f notation, we only consider the simplest case, that is the case when s = 1.
Y Let
", Tn=<01702,"'aon>
'.‘_ and
:: Tm=<519621"'16m>
b, be the templates for T, and T,,, respectively. The left form of a template operator
L which maps 7T, into T, is
+
2 L=[<Rh51 >1<R2v52 >a"°v<Rﬂuam >]l
o where R; is the operating template for node 5; and is a template vector in 7.
" The corresponding right form of this operator is
L
L=[<Ci0 >,<C2,00>,--+,< Cp,0n >,
3
. where C,, = LI,,, the image template for node o;, is a template vector in 7,,. We
R also leave the rest of the definitions for this case to the reader.
o
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